全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessing Rainfall Erosivity with Artificial Neural Networks for the Ribeira Valley, Brazil

DOI: 10.1155/2010/365249

Full-Text   Cite this paper   Add to My Lib

Abstract:

Soil loss is one of the main causes of pauperization and alteration of agricultural soil properties. Various empirical models (e.g., USLE) are used to predict soil losses from climate variables which in general have to be derived from spatial interpolation of point measurements. Alternatively, Artificial Neural Networks may be used as a powerful option to obtain site-specific climate data from independent factors. This study aimed to develop an artificial neural network to estimate rainfall erosivity in the Ribeira Valley and Coastal region of the State of S?o Paulo. In the development of the Artificial Neural Networks the input variables were latitude, longitude, and annual rainfall and a mathematical equation of the activation function for use in the study area as the output variable. It was found among other things that the Artificial Neural Networks can be used in the interpolation of rainfall erosivity values for the Ribeira Valley and Coastal region of the State of S?o Paulo to a satisfactory degree of precision in the estimation of erosion. The equation performance has been demonstrated by comparison with the mathematical equation of the activation function adjusted to the specific conditions of the study area. 1. Introduction Erosion is considered one of the main causes of depauperation and alteration of soil properties and, consequently, of loss of agricultural soil. Mathematical models are used to quantify and/or predict such losses [1, 2]. One classical example is the universal soil loss equation (USLE), proposed by Wischmeier and Smith [3]. This equation predicts the average annual soil loss from agricultural land. The USLE is represented by the product of the following factors: (a) rainfall erosivity (R), (b) soil erodibility (K), (c) slope length (L), (d) slope percent (S), (e) soil use, handling, and coverage (C), and (f) conservative practices of soil support (P). The R factor is an index that expresses the rainfall erosivity, in other words, its erosive capacity [4]. Erosivity is defined as the rainfall potential for soil erosion and is exclusively a function of rainfall physical characteristics, including amount, intensity of fall, droplet size, terminal velocity, and kinetic energy. Some studies have been conducted to further detail research on this erosive agent and showed that the rainfall characteristics that provide the best correlations with soil losses are intensity of fall and kinetic energy [5]. Therefore, the estimation of erosivity values, which represents the rainfall potential for erosion, is essential for planning soil

References

[1]  R. L. Rufino, R. C. M. Biscaia, and G. H. Merten, “Determina??o do potencial erosivo da chuva do Estado do Paraná, através de pluviometria: terceira aproxima??o,” Revista Brasileira de Ciência do Solo, vol. 17, pp. 934–444, 1993.
[2]  M. C. Moreira, R. A. Cecílio, F. A. C. Pinto, and F. F. Pruski, “Estimates of rainfall erosivity in S?o Paulo state by an artificial neural network,” Revista Brasileira de Ciencia do Solo, vol. 30, no. 6, pp. 1069–1076, 2006.
[3]  W. H. Wischmeier and D. D. Smith, Predicting Rainfail Erosion Loses—A Guide to Conservation Planning, vol. 537 of Agriculture Handbook, USDA, Washington, DC, USA, 1978.
[4]  W. H. Wischmeier, “A rainfall erosion index for a universal soil: loss equation,” Soil Science Society of America Proceedings, vol. 23, no. 3, pp. 246–249, 1959.
[5]  D. Moreti, A. R. Mannige, and M. P. Carvalho, “Fator erosividade da chuva para o município de Pedrinhas Paulista, estado de S?o Paulo,” Acta Scientiarum, vol. 25, no. 1, pp. 137–145, 2003.
[6]  J. Bertoni and F. L. Neto, Conserva??o do Solo, ícone, S?o Paulo, Brazil, 2nd edition, 1990.
[7]  F. Lombardi Neto and W. C. Moldenhauer, “Erosividade da chuva: sua distribui??o e rela??o com perdas de solo em Campinas, SP,” Bragantia, vol. 51, no. 2, pp. 189–196, 1992.
[8]  R. B. Silva, P. Iori, and F. A. M. Silva, “Proposi??o e valida??es de equa??es para estimativa da erosividade de dois municípios do estado de S?o Paulo,” Irrigation Revista, vol. 14, no. 4, pp. 533–547, 2009.
[9]  Erosividade. Software. Vers?o 1.0, GPRH / IAC, Vi?osa, MG, 1999.
[10]  A. M. Silva, “Rainfall erosivity map for Brazil,” Catena, vol. 57, no. 3, pp. 251–259, 2004.
[11]  T. M. Mitchell, Machine Learning, MacGrawn-Hill, Boston, Mass, USA, 1998.
[12]  M. Persson, B. Sivakumar, R. Berndtsson, O. H. Jacobsen, and P. Schj?nning, “Predicting the dielectric constant-water content relationship using artificial neural networks,” Soil Science Society of America Journal, vol. 66, no. 5, pp. 1424–1429, 2002.
[13]  S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 1999.
[14]  F. Sárk?zy, “GIS functions—interpolation,” Periodica Polytechnica, vol. 43, no. 1, pp. 63–86, 1999.
[15]  B. Li, Spatial interpolation of weather variables using artificial neural networks, Tese de Mestrado, University of Georgia, Athens, Greece, 2002.
[16]  M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network Design, PWS, Boston, Mass, USA, 1996.
[17]  N. S. Saito, R. A. Cecílio, J. E. M. Pezzopane, and J. S. Faria, “Estimativa da erosividade da chuva para o estado do Espírito Santo,” in 11th Encontro Latino Americano de Inicia??o Científica e VII Encontro Latino Americano de Pós-Gradua??o—Universidade do Vale do Paraíba, pp. 2250–2253, S?o José dos Campos, Anais, Spain, 2007.
[18]  A. P. Camargo and P. C. Sentelhas, “Avalia??o do desempenho de diferentes métodos de estimativa da evapotranspira??o potencial no Estado de S?o Paulo, Brasil,” Revista Brasileira de Agrometeorologia, vol. 5, no. 1, pp. 89–97, 1997.
[19]  D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations,” Transactions of American Society of Agricultural and Biological Engineers, vol. 50, no. 3, pp. 885–900, 2007.
[20]  D. A. Rom?o, Vale do Ribeira: um Ensaio para o Desenvolvimento das Comunidades Rurais, Ministério do Desenvolvimento Agrário, Núcleo de Estudos Agrários e Desenvolvimento Rural (NEAD Debate; 11), Brasília, Brazil, 2006.
[21]  C. J. Willmott, “On the validation of models,” Physical Geography, vol. 2, no. 2, pp. 184–194, 1981.
[22]  J. E. Nash and J. V. Sutcliffe, “River flow forecasting through conceptual models part I—a discussion of principles,” Journal of Hydrology, vol. 10, no. 3, pp. 282–290, 1970.
[23]  D. R. Legates and G. J. McCabe Jr., “Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation,” Water Resources Research, vol. 35, no. 1, pp. 233–241, 1999.
[24]  S. K. Chong, R. E. Green, and L. R. Ahuja, “Infiltration prediction based on estimation of Green-Ampt wetting front pressure head from measurements of soil water redistribution,” Soil Science Society of America Journal, vol. 46, no. 2, pp. 235–239, 1982.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133