|
- 2016
人类白细胞抗原-E在宫颈癌中的表达及意义
|
Abstract:
[1] | Leos Krena, Pavel Fabian, Ondrej Slaby. Multifunctional immune-modulatory protein HLA-E identified in classical Hodgkin lymphoma: possible implications[J]. Pathol Res Pract, 2012, 208(1):45-49. |
[2] | Andersson E, Poschke I, Villabona L, et al. Non-classical HLA-class I expression in serous ovarian carcinoma: Correlation with the HLA-genotype, tumor infiltrating immune cells and prognosis[J]. Oncoimmunology, 2015, 5(1): e1052213. doi:10.1080/2162402X.2015.1052213. |
[3] | Kochan G, Escors D, Breckpot K, et al. Role of non-classical MHC class I molecules in cancer immunosuppression[J]. Oncoimmunology, 2013, 2(11):e26491. doi:10.4161/onci.26491. |
[4] | Iwaszko M, Bogunia-Kubik K. Clinical significance of the HLA-E and CD94/NKG2 interaction[J]. Arch Immunol Ther Exp, 2011, 59(5):353-367. |
[5] | Wada H, Matsumoto N, Maenaka K, et al. The inhibitory NK cell receptor CD94/NKG2A and the activating receptor CD94/NKG2C bind the top of HLA-E through mostly shared but partly distinct sets of HLA-E residues[J]. Eur J Immunol, 2004, 34(1):81-90. |
[6] | Guo ZY, Lv YG, Wang L, et al. Predictive value of HLA-G and HLA-E in the prognosis of colorectal cancer patients[J]. Cell Immunol, 2015, 293(1):10-16. |
[7] | Ishigami S, Arigami T, Okumura H, et al. Human Leukocyte Antigen(HLA)-E and HLA-F Expression in Gastric Cancer[J]. Anticancer Res, 2015, 35(4):2279-2285. |
[8] | Pyo CW, Williams LM, Moore Y, et al. HLA-E, HLA-F, and HLA-G polymorphism: genornic sequence defines haplotype structure and variation spanning the nonclassical class I genes[J]. Immunogenetics, 2006, 58(4): 241-251. |
[9] | Kraemer T, Blasczyk R, Bade-Doeding C. HLA-E: a novel player for histocompatibility[J]. J Immunol Res, 2014, 2014: 352160.doi: 10.1155/2014/352160. Epub 2014 Oct 20. |
[10] | Tremante E, Ginebri A, Lo Monaco E, et al. A melanoma immune response signature including Human Leukocyte Antigen-E[J]. Pigment Cell Melanoma Res, 2014, 27(1):103-112. |
[11] | Sheu BC, Chiou SH, Lin HH, et al. Up-regulation of inhibitory natural killer receptors CD94/NKG2A with suppressed intracellular perforin expression of tumor-infiltrating CD8<sup>+</sup> T lymphocytes in human cervical carcinoma[J]. Cancer Res, 2005, 65(7):2921-2929. |
[12] | Monnier-Benoit S, Mauny F, Riethmuller D, et al. Immunohistochemical analysis of CD4<sup>+</sup> and CD8<sup>+</sup> T- cell subsets in high risk human papillomavirus- associated pre- malignant and malignant lesions of the uterine cervix[J]. Gynecol Oncol, 2006, 102(1):22-31. |
[13] | Pietra G, Romagnani C, Manzini C, et al. The emerging role of HLA-E-restricted CD8<sup>+</sup>T lymphocytes in the adaptive immune response to pathogens and tumors[J]. J Biomed Biotechnol, 2010, 2010: 907092. doi:10.1155/2010/907092. |
[14] | Peghini BC, Abdalla DR, Barcelos ACM, et al. Local cytokine profiles of patients with cervical intraepithelial and invasive neoplasia[J]. Hum Immunol, 2012, 73(9):920-926. |
[15] | 丰有吉, 沈铿, 马丁. 妇产科学[M]. 北京: 人民卫生出版社, 2015:296-301. |
[16] | Gon?alves AS, Oliveira JP, Oliveira CF, et al. Relevance of HLA-G, HLA-E and IL-10 expression in lip carcinogenesis[J]. Hum Immunol, 2016, 77(9):785-790. |
[17] | Garcia-Iglesias T, Del Toro-Arreola A, Albarran-Somoza B, et al. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions[J]. BMC Cancer, 2009, 9:186. doi:10.1186/1471-2407-9-186. |
[18] | Chen Z, Ding J, Pang N, et al. The Th17/Treg balance and the expression of related cytokines in Uygur cervical cancer patients[J]. Diagn Pathol, 2013, 8:61. doi:10.1186/1746-1596-8-61. |
[19] | Mehta AM, Jordanova ES, Kenter GG, et al. Association of antigen processing machinery and HLA class I defects with clinicopathological outcome in cervical carcinoma[J]. Cancer Immunol Immunother, 2008, 57(2):197-206. |