全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

乘积季节模型在我国肺结核疫情预测中的应用
Application of multiple seasonal model in prediction of tuberculosis epidemic

DOI: 10.6040/j.issn.1671-7554.0.2017.1266

Keywords: 疫情,乘积季节模型,肺结核,预测,
Multiple seasonal model
,Tuberculosis,Prediction,Epidemic

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  孟凡东,吴迪,隋承光.2004-2015年中国狂犬病发病数据ARIMA乘积季节模型的建立及预测[J].中国卫生统计, 2016, 33(3): 389-391, 395. MENG Fandong, WU Di, SUI Chengguang. Human rabies incidence in China: trends and predictions from a time series analysis from 2004 through 2015[J]. Chinese Journal of Health Statistics, 2016, 33(3): 389-391, 395.
[2]  娄鹏威.新疆巴州地区布鲁氏菌病模型的分析与仿真[D].乌鲁木齐:新疆医科大学, 2017.
[3]  胡晓媛,孙庆文,王玲玲,等.基于乘积SARIMA模型的肺结核发病率预测[J].第二军医大学学报, 2016, 37(8): 969-974. HU Xiaoyuan, SUN Qingwen, WANG Lingling, et al. Multiplicative SARIMA model for prediction of pulmonary tuberculosis incidence[J]. Academic Journal of Second Military Medical University, 2016, 37(8): 969-974.
[4]  胡晓媛,吴娟,孙庆文,等.ARIMA模型与GRNN模型对肺结核发病率预测的对比研究[J].第二军医大学学报, 2016, 37(1): 115-119. HU Xiaoyuan, WU Juan, SUN Qingwen, et al. Comparative study on ARIMA model and GRNN model for predicting the incidence of tuberculosis[J]. Anhui J Prev Med, 2016, 37(1): 115-119.
[5]  李大罕,张建花,刘涛.应用灰色模型预测连云港市肺结核流行趋势[J].江苏预防医学, 2015, 26(5): 20-21. LI Dahan, ZHANG Jianhua, LIU Tao. Application of grey model on prediction of tuberculosis epidemic trend in Lianyungang[J]. Jiangsu J Prev Med, 2015, 26(5): 20-21.
[6]  杨小兵,孔德广,江高峰.ARIMA乘积季节模型在手足口病发病预测中的应用研究[J].中国预防医学杂志, 2016, 17(3): 207-211. YANG Xiaobing, KONG Deguang, JIANG Gaofeng. Application of multiple seasonal ARIMA model in the prediction of the incidence of hand-foot-mouth disease[J]. Chin Prev Med, 2016, 17(3): 207-211.
[7]  彭志行,陶红,贾成梅,等.时间序列分析在麻疹疫情预测预警中的应用研究[J].中国卫生统计, 2010, 27(5): 459-463. PENG Zhihang, TAO Hong, JIA Chengmei, et al. The applied Research of the time series analysis in the forecasting and early waming of infectious diseases[J]. Chinses Journal of Health Statistics, 2010, 27(5): 459-463.
[8]  王丹霞,林伟,饶正远,等.灰色模型在四川省肺结核疫情预测中的应用[J].应用预防医学, 2015, 21(3): 144-147. WANG Danxia, LIN Wei, RAO Zhengyuan, et al. Application of grey model to predict epidemic trends of tuberculosis in Sichuan Province[J]. J Applied Prev Med, 2015, 21(3): 144-147.
[9]  陈银苹,吴爱萍,余亮科,等.组合模型对肺结核发病趋势的预测研究[J].中国全科医学, 2014, 17(21): 2452-2456. CHEN Yinping, WU Aiping, YU Liangke, et al. Combination model for predicting the incidence of pulmonary tuberculosis[J]. Chinese General Practic, 2014, 17(21): 2452-2456.
[10]  刘继恒,白春林,孙要武,等.应用ARIMA模型预测肺结核报告发病率的研究[J].中国热带医学, 2014, 14(9): 1067-1070. LIU Jiheng, BAI Chunlin, SUN Yaowu, et al. Application of ARIMA model in prediction of tuberculosis incidence[J]. China Tropical Medicine, 2014, 14(9): 1067-1070.
[11]  温亮,张秀山,李承毅,等.季节分解法和ARIMA法预测乌鲁木齐市肺结核发病趋势效果分析[J].军事医学, 2017, 41(4): 287-290. WEN Liang, ZHANG Xiushan, LI Chengyi, et al. Seasonal decomposition and ARIMA methods in prediction of tuberculosis incidence in Urumqi, China[J]. Mil Med Sci, 2017, 41(4): 287-290.
[12]  王健,周脉耕,胡嘉,等.求和自回归移动平均模型在江西省结核病发病预测中应用[J].疾病监测, 2012, 27(6): 462-467. WANG Jian, ZHOU Maigeng, HU Jia, et al. Application of ARIMA model in predicting tuberculosis incidence in Jiangxi[J]. Disease Surveillance, 2012, 27(6): 462-467.
[13]  陈建,陈佰锋,文育锋,等.2004-2014年全国肺结核月发病率时间趋势分析[J].中国公共卫生管理, 2016, 32(4): 438-440. CHEN Jian, CHEN Baifeng, WEN Yufeng, et al. Analysis of temporal trend of the monthly incidence of pulmonary tuberculosis in China, 2004-2014[J]. Chinese Journal of Public Health Management, 2016, 32(4): 438-440.
[14]  柳巍,曾令城,李焕芝.灰色残差GM(1,1)模型在预测肺结核流行趋势中的应用[J].河南医学研究, 2015, 24(7): 1-3. LIU Wei, ZENG Lingcheng, LI Huanzhi. Application of the Grey Residual GM(1,1)Model in predicting the epidemic tendency of lung tuberculosis[J]. Henan Medical Research, 2015, 24(7): 1-3.
[15]  World Health Organization. Global tuberculosis report 2017[EB/OL]. http://www.who.int/tb/publications/global_report/en/, 2017-11-06/2017-12-26.
[16]  梁纪伟,姜法春,韩雅琳,等.应用ARIMA乘积季节模型预测青岛市甲肝发病[J].中国公共卫生管理, 2016, 32(6): 780-782, 793. LIANG Jiwei, JIANG Fachun, HAN Yalin, et al. Application of multiple seasonal ARIMA model in forecasting incidence of hepatitis A in Qingdao[J]. Chinese Journal of Public Health Management, 2016, 32(6): 780-782, 793.
[17]  黄惠珍.我国肺结核流行的主要危险因素及干预措施研究进展[J].中外医学研究, 2017, 15(11): 162-164.
[18]  尹小芳,葛海波.住院肺结核合并糖尿病患者流行病学特征[J].山东大学学报(医学版), 2016, 54(1): 58-61. YIN Xiaofang, GE Haibo. Epidemiological features of inpatients suffered from pulmonary tuberculosis with diabetes mellitus[J]. Journal of Shandong University(Health Sciences), 2016, 54(1): 58-61.
[19]  王建书,刘强,覃江纯,等.基于ARIMA乘积季节模型的苏州市介水传染病发病预测研究[J].环境卫生学杂志, 2017, 7(6): 417-420. WANG Jianshu, LIU Qiang, QIN Jiangchun, et al. Prediction of incidence for water-borne diseases on a multiple seasonal ARIMA model in Suzhou[J]. Journal of Environmental Hygiene, 2017, 7(6): 417-420.
[20]  刘晓芬.胶南市1990~2012年病毒性肝炎流行特征分析及预测研究[D].济南:山东大学, 2014.
[21]  张泽武,卢展鹏,曾耀明,等.ARIMA模型在东莞市细菌性痢疾预测中的应用[J].公共卫生与预防医学, 2013, 24(4): 43-45. ZHANG Zewu, LU Zhanpeng, ZENG Yaoming, et al. Application of autoregressive integrated moving average model in forecasting bacillary dysentery in Dongguan City[J]. J of Pub Health and Prev Med, 2013, 24(4): 43-45.
[22]  徐学琴,张知鸷,王瑾瑾,等.基于改进BP神经网络模型的肺结核发病率预测[J].中国现代医学杂志, 2017, 27(23): 124-126.
[23]  中国疾病预防控制中心.2016年全国法定传染病疫情概况[EB/OL]. http://www.nhfpc.gov.cn/jkj/s3578/201702/38ca5990f8a54ddf9ca6308fec406157.shtml, 2017-02-23/2017-12-26.
[24]  杨召,叶中辉,尤爱国,等.乘积季节ARIMA模型在结核病发病率预测中应用[J].中国公共卫生, 2013, 29(4): 469-472. YANG Zhao, YE Zhonghui, YOU Aiguo, et al. Application of multiple seasonal ARIMA model in prediction of tuberculosis incidence[J]. Chin J Public Health, 2013, 29(4): 469-472.
[25]  黄文辉,邹林南.疏系数ARIMA模型预测江西省肺结核发病趋势[J].安徽预防医学杂志, 2016, 22(3): 145-148, 179. HUANG Wenhui, ZOU Linnan. Application of Sparse coefficient ARIMA model in predicting incidence trend of tuberculosis in JiangXi province[J]. Anhui J Prev Med, 2016, 22(3): 145-148, 179.
[26]  陈会枝,孟伟伟,贺付成.人工神经网络与灰色理论模型在传染病中的应用[J].中国实用神经疾病杂志, 2016, 19(2): 51-52.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133