全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

局部对称伪黎曼流形中的2-调和类时子流形
On the 2-harmonic timelike submanifolds in locally symmetric pseudo-riemannian manifolds

DOI: 10.6040/j.issn.1671-9352.0.2015.496

Keywords: 极大类时,2-调和类时子流形,局部对称,伪黎曼流形,
locally symmetric
,2-harmonic timelike submanifold,maximun timelike,pseudo-Riemannian manifold

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 利用活动标架法,研究了局部对称伪黎曼流形中的2-调和类时子流形,得到了这类子流形的Simons型积分不等式以及关于其第二基本形式模长平方的拼挤定理。
Abstract: Based on the moving frames, the 2-harmonic timelike submanifolds in locally symmetric pseudo-Riemannian manifolds is studied. Also, an integral inequality of Simonss type and a pinching theorem about the squared norm of the second fundamental form in this submanifolds are obtained

References

[1]  EELLS J, LEMAIRE L. Selected topics in harmonic maps[M]. Washington: American Mathematical Society, 1983.
[2]  李影, 宋卫东. 局部对称伪Riemann流形中的紧致极大类时子流形[J]. 吉林大学学报(理学版), 2015, 53(3):457-460. LI Ying, SONG Weidong. Maximum timelike submannifold in a locally symmetric pseudo-Riemannian manifold[J]. Journal of Jilin University(Science Edition), 2015, 53(3):457-460.
[3]  GOLDBERG S I. Curvature and homology[M]. London: Academic Press, 1962.
[4]  宋卫东, 江桔丽. 关于局部对称伪黎曼流形中的2-调和类空子流形[J]. 系统科学与数学, 2007, 27(2):170-176. SONG Weidong, JIANG Juli. On 2-harmonic space-like submanifolds of a locally symmetric pseudo-Riemannian manifold[J]. Journal of Systems Science and Complexity, 2007, 27(2):170-176.
[5]  沈一兵. 关于伪 Riemmann流形的极大子流形[J]. 杭州大学学报(自然科学版), 1991, 18(4):371-376. SHEN Yibing. On maximal submanifolds in pseudo-Riemannian manifolds[J]. Journal of Hangzhou University(Natural Science), 1991, 18(4):371-376.
[6]  胡有婧, 纪永强. de Sitter空间中的紧致极大类时子流形[J]. 吉林大学学报(理学版), 2014, 52(5):895-900. HU Youjing, JI Yongqiang. The compact timelike submanifolds in the de Sitter space[J]. Journal of Jilin University(Science Edition), 2014, 52(5):895-900.
[7]  欧阳崇珍. 伪黎曼空间型的2-调和类空子流形[J]. 数学年刊, 2000, 21(6):649-654. OUYANG Chongzhen. On 2-harmonic space-like submanifolds in pseudo-Riemannian manifolds[J]. Chinese Annals of Mathematics, 2000, 21(6):649-654.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133