全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

具有饱和发病率随机SIQS传染病模型的稳定性
The stability of stochastic SIQS epidemic model with saturated incidences

DOI: 10.6040/j.issn.1671-9352.0.2015.001

Keywords: 平衡点,稳定性,传染病模型,Ito公式,
stability
,Ito formula,equilibrium point,epidemic model

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 研究了一类随机SIQ传染病模型,通过定义停时及利用伊藤公式,得到系统全局正解的存在唯一性。利用构造合适的Lyapunov函数,证明了在一定的条件下系统的解指数稳定及遍历性。数值模拟验证了我们所得的主要结果。
Abstract: A kind of stochastic SIQ epidemic model with saturated incidences is investigated. By using of the stop time and Ito formula, the existence-and-uniqueness of global positive solution for the model is obtained. By constructing suitable Lyapunov function, the exponential stability and ergodicity of the solution are derived under some moderate conditions. And numerical simulations are carried out to illustrate our results

References

[1]  LAHROUZ A, OMARI L.Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence[J].Statistics and Probability Letters, 2013, 83(4):960-968.
[2]  HASMINSKII R. Stochastic stability of differential equations[M]. Netherlands Alphen aan den Rijin: Sijthoff and Noordhoff, 1980.
[3]  JIANG Daqing, JI Chunyan, SHI Ningzhong, et al.The long time behavior of DI SIR epidemic model with stochastic perturbation[J]. Journal of Mathmatical Analysis and Applications, 2010, 372(1):162-180.
[4]  LIU Hong, YANG Qingshan, JIANG Daqing.The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences[J].Automatica, 2012, 48(5):820-825.
[5]  JI Chunyan, JIANG Daqing, SHI Ningzhong.Multigroup SIR epidemic model with stochastic perturbation[J].Physica A: Statistical Mechanics and its Applications, 2011, 390(10):1747-1762.
[6]  YANG Qingshan, JIANG Daqing, SHI Ningzhong, et al.The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence [J].Journal of Mathematical Analysis and Applications, 2012, 388(1):248-271.
[7]  JI Chunyan, JIANG Daqing, YANG Qingshan, et al.Dynamics of a multigroup SIR epidemic model with stochastic perturbation[J].Automatica, 2012, 48(1):121-131.
[8]  BROWN G C, HASIBUAN R.Conidial discharge and transmission efficiency of Neozygites floridana, an entomopathogenic fungus infecting two-spotted spider mites under laboratory conditions[J]. Journal of Invertebrate Pathology, 1995, 65(1):10-16.
[9]  MAY R M. Stability and complexity in model ecosystems[M]. Princeton, NJ: Princeton University Press, 2001.
[10]  HIGHAM D J. An algorithmic introduction to numerical simulation of stochastic differential equations[J].SIAM Review, 2001, 43(3):525-546.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133