|
- 2016
Nehari流形在一类半线性抛物方程爆破中的应用
|
Abstract:
摘要: 研究了一类半线性抛物方程的初边值问题,在具有正初始能量的情况下,通过Nehari流形与凸性方法得到了解的有限时间爆破,进而刻画了初始能量与有限时间爆破的关系。
Abstract: The initial boundary value problem for a class of semilinear parabolic equations with positive initial energy is studied. The finite time blow-up of solutions is obtained by the Nehari manifold and the convexity method. Moreover, the relationship between initial energy and finite time blow-up of solutions is described
[1] | BUDD C, DOLD B, STUART A. Blow-up in a system of partial differential equations with conserved first integral II Problems with convection[J]. SIAM J Appl Math, 1994, 54(3):610-640. |
[2] | JAZAR M, KIWAN R. Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions[J]. Ann I H Poincaré-AN, 2008, 25(2):215-218. |
[3] | EI SOUFI A, JAZAR M, MONNEAU R. A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions[J]. Ann I H Poincaré-AN, 2007, 24(1):17-39. |
[4] | GAO Wenjie, HAN Yuzhu. Blow-up of a nonlocal semilinear parabolic equation with positive initial energy[J]. Appl Math Lett, 2011, 24(5):784-788. |
[5] | ALVES C O, EL HAMIDI A. Nehari manifold and existence of positive solutions to a class of quasilinear problems[J]. Nonlinear Anal-Theor, 2005, 60(4):611-624. |
[6] | AMBROSETTI A, RABINOWITZ P H. Dual variational methods in critical point theory and applications[J]. J Funct Anal, 1973, 14(4):349-381. |
[7] | MO Haiping, LIU Yang, YU Tao. Continuity of depth functions of potential well family for a class of nonlinear wave equations[J]. Mathematica Applicata, 2011, 24(1):126-130. |