|
- 2016
区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画
|
Abstract:
摘要: 以区间集思想作为研究工具,讨论非交换剩余格和滤子理论,引入区间集上非交换剩余格与区间集上非交换剩余格fuzzy滤子的概念,给出区间集上非交换剩余格〈,(-overQ)〉-fuzzy滤子的代数结构,进一步得到若干等价性特征刻画,并对表示定理的充分必要条件予以证明。
Abstract: Taking the thought of interval sets as the research tool, the theories of non-commutative residual lattices are discussed on the interval sets and filters. The concepts of non-commutative residual lattices are introduced on interval sets and fuzzy filters of non-commutative residual lattices on interval sets. The algebraic structure of the 〈,(-overQ)〉-fuzzy filters of non-commutative residual lattices is provided on interval sets, and several equivalent characterization are received. A detailed demonstration for the necessary and sufficient conditions of the representation theorem is given
[1] | HáJEK P. Observations on non-commutative fuzzy logic[J]. Soft Computing, 2003, 8(1):38-43. |
[2] | ZHANG Xiaohong, HE Huacan, XU Yang. Fuzzy logic system based on schweizer-sklar t-norm[J]. Science in China: Series F Information Sciences, 2006, 49(2):175-188. |
[3] | 张小红.模糊逻辑及其代数分析[M].北京:科学出版社,2008. ZHANG Xiaohong. Fuzzy logic and algebraic analysis[M]. Beijing: Science Press, 2008. |
[4] | BHAKAT S K, DAS P. fuzzy subgroup[J]. Fuzzy Sets Systems, 1996, 80:359-368. |
[5] | YAO Yiyu.Two views of theory of rough sets in finite universes[J]. International Journal of Approximation Rersoning, 1996, 15(4):291-317. |
[6] | HáJEK P. Fuzzy logics with non-commutative conjunction[J]. Journal of Logic and Computation, 2003, 13(4):469-479. |
[7] | LEUSTEAN I. Non-commutative lukasiewitcz propositional logic[J]. Archive for Maehematical Logic, 2006, 45(1):191-213. |
[8] | 乔希民,张东翰.区间集上<i>R</i><sub>0</sub>-代数的表示形式及其性质[J]. 重庆工商大学学报(自然科学版),2014,31(11):15-21. QIAO Ximin, ZHANG Donghan. The representation and properties of <i>R</i><sub>0</sub>-algebra on interval sets[J]. Journal of Chongqing Technology and Business University(Natural Science Edition), 2014, 31(11):15-21. |
[9] | ABRUSCI V M, RUET P. Non-commutative logic I: the multiplicative frequent[J]. Annals of Pure and Applied Logic, 2000, 101(1):29-64. |
[10] | VOJTAS P. Fuzzy logic programming[J]. Fuzzy Set and Systems, 2001, 124:361-370. |
[11] | PU Baoming, LIU Yingming. Fuzzy topologyⅡ: product and quotient spaces[J]. Journal of Mathematical Analysis and Applications, 1980, 77(2):20-37. |
[12] | 中国科协学会学术部编.不确定性人工智能前沿理论与应用研究[M].北京:中国科学技术出版社,2014. Learn to academic department of China association for science and technology. Uncertainty in artificial intelligence theory and application research of the frontier[M]. Beijing: Science and Technology of China Press, 2014. |
[13] | ROSENFELD A. Fuzzy groups[J]. Journl of Mathematical Analysis and Applications, 1971, 35:512-517. |
[14] | PU Baoming, LIU Yingming. Fuzzy topologyⅠ:Neighborhood structure of a fuzzy point and Moore-Smith convergence[J]. Journal of Mathematical Analysis and Applications, 1980, 76(2):571-599. |
[15] | BHAKAT S K, DAS P. On the defmition of a fuzzy subgroup[J]. Fuzzy Sets Systems, 1992, 51:235-241. |
[16] | RUET P. Non-commutative logicⅡ: sequent calculus andphase semantics[J]. Mathematical Structures in Computer Science, 2000, 10(2):277-312. |
[17] | BHAKAT S K, DAS P. Fuzzy subrings and ideals redefined[J]. Fuzzy Sets Systems, 1996, 81:383-393. |
[18] | LIAO Zuhua.(∈, ∈∨<i>q<sub>(λ,μ)</sub>)</i>-fuzzy normal subgroup[J]. Fuzzy Systems and Mathematics, 2006, 20(5):47-53. |
[19] | YUAN Xuehai. Generalized fuzzy Subgroups and many-Valued Implications[J]. Fuzzy Sets and Systems, 2003, 138:205-211. |
[20] | YAO Yiyu. Interval sets and Interval-set Algebras[C] // The 8th IEEE International Conference on Cognitive informatics. Hong Kong: IEEE Computer Society, 2009:3 07-314. |
[21] | 姚一豫.区间集[M] //王国胤,李德毅, 姚一豫,等.云模型与粒计算.北京:科学出版社,2012:74-93. YAO Yiyu. Interval sets[M] // WANG Wguoyin, LI Deyi, YAO Yiyu, et al. Cloud model and granular computing. Beijing: Science Press, 2012: 74-93. |
[22] | 王国俊.非经典数理逻辑与近似推理[M].2版.北京:科学出版社,2008. WANG Guojun. Nonclassical mathematical logic and approximate reasoning[M]. 2nd ed. Beijing: Science Press, 2008. |
[23] | 裴道武.基于三角模的模糊逻辑理论及其应用[M].北京:科学出版社,2013. PEI Daowu. Based on the triangle model of fuzzy logic theory and its application[M]. Beijing: Science Press, 2013. |
[24] | 刘春辉.BL-代数的区间值(∈,∈∨<i>q</i>)-模糊滤子理论[J]. 山东大学学报(理学版),2014,49(10):83-89. LIU Chunhui.(∈,∈∨<i>q</i>)-fuzzy filters in BL-algebras[J]. Journal of Shandong University(Natural Science), 2014, 49(10):83-89. |
[25] | LOTFL A. ZADEH. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353. |
[26] | KRAJCI S, LENCSES R, AMEDIN J, et al. Non-commutativty and expressive deductive logic databases[J]. Lecture Notes in Computer Science, Springer-Verlag GmbH, 2002, 2424:149-160. |
[27] | ARESKI NAIT ABDALLAH, ALAIN LECOMTE. On expressing vague quantification and scalar implicatures in the logic of partial information[C] // Logical aspects of computational linguistics. Berlin Heidelberg: Springer-Verlag, 2005: 205-220. |