|
- 2016
缩短牙种植术与分根术联合修复周期的可行性研究
|
Abstract:
摘要: 模拟临床咬合,对种植术与分根术联合修复后的牙体进行功能性早期负载,得到下颌骨各阶段的最大变形量,从而研究缩短种植术与分根术联合修复周期的可行性。采用反求的方法得到实验模型,在没有形成骨结合的情况下对术后牙体施加动态载荷,通过有限元计算得出在整个咬合周期内下颌骨的变形分布规律。最大变形量出现在受力角度达到最大处,且小于产生纤维性结合的最小阀值150 μm,可以用早期负重代替传统延期负重作为治疗种植术与分根术联合治疗方法,并且可以缩短治疗周期。
Abstract: In order to study the feasibility of shorten the treatment cycle of dental implantation and split-root technique joint repair. Simulating clinical chew and applying immediate load on the tooth of dental implantation and split-root technique joint repaired to get the information of mandibulars maximum deformation in different stages. Firstly getting the experimental model by the method of reverse engineering, and then applying dynamic loads on the postoperative tooth before the implant osseointegrates into the bone, lastly calculating deformation distribution in the whole period of chew cycle by finite element analysis. The maximum deformation occurs at the point of maximum stress angle, and less than 150 μm which produces junctura fibrosa. So we get the conclusion that immediate loading can be used instead of traditional extension loading to shorten the treatment cycle
[1] | HAGHERG C. Electromyography and bite force studies of muscular function and dysfunction in masticatory muscles[J]. Swedish Dental Joumal, 1986, 10(1):1-64. |
[2] | 杨德圣,刘洪臣,顾晓明,等.牙种植体挤压植入后早期骨界面的组织学变化[J].中华老年口腔医学杂志,2005, 3(2):113-114. YANG Desheng, LIN Hongxi, GU Xiaoming, et al. Early bone formation of endosseous dental implants inserted in compresses alveolar bed of miniature swine[J]. Chinese Journal of Geriatric Dentistry, 2005, 3(2):113-114. |
[3] | 刘旺玉,陈雪林,蔡斌,等.动态咬合下牙周膜的生物力学分析[J].医用生物力学,2013(5):542-547. LIU Wangyu, CHEN Xuelin, CAI Bin, et al. Biomechanical analysis on periodontal ligament in dynamic jaw[J]. Journal of Medical Biomechanics, 2013(5):542-547. |
[4] | PEGORETTI A, FAMBRI L, ZAPPINI G, et al. Finite element analysis of a glass fibre reinforced composite endodontic post[J]. Biomaterials, 2002, 23(13):2667-2682. |
[5] | MEIJER H J A, STARMANS F J M, BOSMAN F, et al. A comparison of three finite element models of edentulous mandible provided with implants[J]. J Oral Rehabil, 1993, 20(2):147-157. |
[6] | 宿玉成.现代口腔种植学[M].北京:人民卫生出版社,2009: 333-338. SU Yucheng. Modern oral implantology[M]. Beijing: Peoples Medical Publishing Hous, 2009: 333-338. |
[7] | HO M H, LEE S Y, CHEN H H, et al. Three-dimensional finite element analysis of the effects of posts on stress distribution in dentin[J]. J Prosthet Dent, 1994, 72(4):367-372. |
[8] | Nakagaki Susumu1, Iijima Masahiro, Handa Keisuke, et al. Micro-CT and histologic analyses of bone surrounding immediately loaded miniscrew implants:Comparing compression and tension loading[J]. Dental Materials Journal, 2014, 33(2):196-202. |
[9] | Kopp Sigmar, Behrend Detlef, Kundt Gunther, et al. No influence of simultaneous bone-substitute application on the success of immediately loaded dental implants: A retrospective cohort study[J]. Biomedizinische Technik, 2013, 58(3):315-321. |
[10] | TASKONAK B, GRIGGS J A, MECHOLSKY J J, et al. Analysis of subcritical crack growth in dental ceramics using fracture mechanics and fractography[J]. Dent Mater, 2008, 24(5):700-707. |
[11] | MELLAL A, WISKOTT H W A, BOTSIS J, et al. Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data[J]. Clin Oral Implants Res, 2004, 15(2):239-248. |
[12] | 皮昕.口腔解剖生理学[M].北京:人民卫生出版社,2007: 288-289. PI Xi. The physiology of oral anatomy[M]. Beijing: Peoples Medical Publishing Hous, 2007: 288-289. |