|
- 2016
算子立方的Weyl定理及其紧摄动
|
Abstract:
摘要: 若σ(T)\σw(T)=π00(T), 则称T∈B(H)满足Weyl定理。 T∈B(H)满足Weyl定理的紧摄动: 如果对任意的紧算子K∈B(H), T+K都满足Weyl定理。本文给出了一种Weyl谱的变体, 根据该变体讨论了T 3和T满足Weyl定理的紧摄动的关系。
Abstract: An operator T∈B(H) is said to satisfy Weyls theorem if σ(T)\σw(T)=π00(T). T∈B(H) is said to have the compact perturbations of Weyls theorem if T+K satisfies Weyls theorem for all compact operators K∈B(H). In this note, a variant of the Weyl spectrum is discussed. Using the variant, we characterize the conditions for T 3 and T satisfying the compact perturbations of Weyls theorem
[1] | COBURN L A. Weyls theorem for nonnormal operators[J]. Michigan Mathematical Journal, 1966, 13(3):285-288. |
[2] | WEYL H V.(¨overU)ber beschr?nkte quadratische Formen, deren differenz vollstetig ist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1):373-392. |
[3] | BERBERIAN S K. An extension of Weyls theorem to a class of not necessarily normal operators[J]. Michigan Mathematical Journal, 1969, 16(3):273-279. |
[4] | ISTRATESCU V I. On Weyls spectrum of an operator. I[J]. Revue Roumaine Des Mathematiques Pures Et Appliquees, 1972, 17:1049-1059. |
[5] | JI Y Q. Quasitriangular+small compact=strongly irreducible[J]. Transactions of the American Mathematical Society, 1999, 351(11):4657-4673. |
[6] | HERRERO D A. Economical compact perturbations. II. Filling in the holes.[J]. J Operator Theory, 1988(1):25-42. |
[7] | RADJAVI H, ROSENTHAL P. Invariant subspaces[M]. 2nd ed. New York: Dover Publications, 2003. |
[8] | HERRERO D A. Approximation of Hilbert space operators[M]. Harlow: Longman Scientific and Technical, 1989. |
[9] | OBERAI K K, OBERAI K K. On the Weyl spectrum[J]. Illinois Journal of Mathematics, 1974, 18(1974):208-212. |
[10] | LI Chunguang, ZHU Sen, FENG Youling. Weyls theorem for functions of operators and approximation[J]. Integral Equations & Operator Theory, 2010, 67(4):481-497. |