全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

综合用户相似性与话题时效性的影响力用户发现算法
EIP: discovering influential bloggers by user similarity and topic timeliness

DOI: 10.6040/j.issn.1671-9352.2.2015.228

Keywords: 影响力,消极性,社交网络,影响力用户识别,
social network
,passivity,influential blogger identification,influential

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 社交网络服务每天产生大量涉及众多话题的信息,并在影响力各异的用户群体推动下广泛传播。在IP(influence passivity)算法的基础上,提出了一种综合话题相似性与信息时效性的影响力用户发现算法EIP(extended influence-passivity)。该算法在转发网络上考虑用户间话题的相似性以及博文信息时效性,更加精准地建模和计算用户的影响力和消极性。基于新浪微博上爬取的约10万用户数据集上的实验验证,EIP影响力度量算法优于IP和TwitterRank等现有方法。
Abstract: Enormous information flowing through Online Social Media nowadays, spreading through hundreds of millions of users with different influence in the network. EIP(extended influence-passivity), an extension of IP(influence passivity)algorithm, is proposed to identify influencers in social network based on users forwarding activity. EIP measures the influence and passivity of users taking both pair wise topical similarity and timeliness feature of information into account. An evaluation performed with about 100 000 user dataset crawled from Sina micro-blog shows that EIP outperforms than other algorithms, including the original IP and TwitterRank

References

[1]  YOUNG H P. The diffusion of innovations in social networks[J]. General Information, 2000, 413(1): 2329-2334.
[2]  KITSAK M, GALLOS L, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6(11):888-893.
[3]  CHA M, HADDADI H, BENEVENUTO F, et al. Measuring user influence in twitter: the million follower fallacy[C] //Proceedings of the 4th International AAAI Conference on Weblogs and Social Media(ICWSM 2010).[S.l.] :AAAI Press, 2010:10-17.
[4]  KLEINBERG J. Authoritative sources in a hyperlinked environment[J]. Journal of the ACM, 1999, 46(5): 604-632.
[5]  ROMERO D, GALUBA W, ASUR S, et al.Influence and passivity in social media[J]. Ssrn Electronic Journal, 2010, 6913(1):18-33.
[6]  TUNKELANG D. A Twitter analogy to pagerank[EB/OL]. [2015-03-26].http: //thenoisychannel.com/2009/01/13/atwitter-analog-to-pagemark/.
[7]  KATZ E. The two-step flow of communication: An up-to-date report on an hypothesis[J]. Public Opinion Quarterly, 1957, 21(1):61-78.
[8]  CATALDI M, CARO L D, SCHIFANELLA C. Emerging topic detection on Twitter based on temporal and social terms evaluation[J]. Preceedings of 10th International Workshop on Multimedia Data Mining. NewYork: ACM, 2010:1-10.
[9]  WENG J, LIM E P, JIANG J, et al. TwitterRank: finding topic-sensitive influential twitterers[J]. Proceedings of the 3rd ACM International Conference on Web Search and Data Mining-WSDM 2010.New Yok: ACM, 2010: 261-270.
[10]  丁兆云, 周斌, 贾焰, 等. 微博中基于多关系网络的话题层次影响力分析[J].计算机研究与发展, 2013, 10: 2155-2175. DING Zhaoyun, ZHOU Bin, JIA Yan, et al. Topic Influence analysis based on the multi-relational network in microblogs[J]. Journal of Computer Research and Development, 2013, 10:2155-2175.
[11]  DING Z, JIA Y, ZHOU B, et al. Mining topical influencers based on the multi relational network in micro-blogging sites[J]. China Communications, 2013, 10(1): 93-104.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133