|
- 2016
Hom-Yetter-Drinfeld模范畴的半单性
|
Abstract:
摘要: 设k是域,(H,α)是带有双射对极的monoidal Hom-Hopf代数, 如果(H,α)是交换的, 诺特的, 半单和余半单, 则Hom-Yetter-Drinfeld模范畴HHYD H是半单的。也就是说设(H,α)是交换的monoidal Hom-Hopf代数。 假设HHYD H 满足某一条件, 并且函子(-)coH:HHYD H→H(Mk)是正合的。 如果(M, μ)∈HHYD H 作为左(H,α)-模是有限生成的, 则(M,μ)∈HHYD H 保持对象。
Abstract: Let k be a field, and(H,α)a monoidal Hom-Hopf algebra with bijective antipode. If(H,α)is commutative, noetherian, semisimple and cosemisimple, then the category HHYD H of Hom-Yetter-Drinfeld modules is semisimple. That is Let(H,α)be commutative. Assume that HHYD H satisfies some condition, and that the functor(-)coH:HHYD H→H(Mk)is exact. If (M,μ)∈HHYD H is finitely generated as an(H,α)-module, then (M,μ) is a projective object in HHYD H
[1] | MAKHLOUF A, SILVESTROV S D. Hom-algebra stuctures[J]. J Gen Lie Theory Appl, 2008, 3(2):51-64. |
[2] | CAENEPEEL S, GOYVAERTS I. Monoidal Hom-Hopf algebras[J]. Comm Algebra, 2011, 39:2216-2240. |
[3] | CAENEPEEL S, GUéDéNON T. Semisimplicity of the categories of Yetter-Drinfeld modules and Long dimodules[J]. Comm. Algebra, 2004, 32(7):2767-2781. |
[4] | MAKHLOUF A, PANAITE F. Yetter-Drinfeld modules for Hom-bialgebras[J]. J Math Phys, 2014, 55(1):013501. |
[5] | GUO Shuangjian, ZHANG Xiaohui, WANG Shengxiang. Braided monoidal categories and Doi Hopf modules for monoidal Hom-Hopf algebras[J]. Colloq Math, 2016, 143(1):79-104. |
[6] | CHEN Yuanyuan, WANG Zhongwei, ZHANG Liangyun. Integrals for monoidal Hom-Hopf algebras and their applications[J]. J Math Phys, 2013, 54(7):073515. |
[7] | CHEN Yuanyuan, ZHANG Liangyun. The category of Yetter-Drinfeld Hom-modules and the quantum Hom-Yang-Baxter equation[J]. J Math Phys, 2014, 55(3):031702. |
[8] | LIU Ling, SHEN Bingliang. Radfords biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras[J]. J Math Phys, 2014, 55:031701. |
[9] | LI Haiying, MA Tianshui. A construction of Hom-Yetter-Drinfeld category[J]. Colloq Math, 2014, 137:43-65. |