全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

模式收缩最小二乘回归子空间分割
Pattern shrinking least square regression for subspace segmentation

DOI: 10.6040/j.issn.1671-9352.0.2016.274

Keywords: 基因表达数据,模式收缩,子空间分割,交替优化,
gene expression data
,pattern shrinking,subspace segmentation,alternative optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 基因表达数据聚类为肿瘤新类别的发现提供了重要手段。然而,直接对原始数据进行聚类会在一定程度上丢失数据本身隐含的流形结构信息,影响子空间分割方法的聚类效果。为解决这一问题,提出模式收缩最小二乘回归(pattern shrinking least square regression, PSLSR)子空间分割方法。该模型能够同时进行模式收缩和仿射矩阵的学习,并利用交替优化方法进行求解。在6个基因表达数据上的实验结果表明该方法优于现有子空间分割方法。
Abstract: Clustering of gene expression data is an important method to discover the new category of tumor. However, clustering directly on the original gene data will lose the hidden manifold structure information, and then affect the clustering effect of the subspace segmentation method. In order to solve this problem, the pattern shrinking least square regression model for subspace segmentation(PSLSR)is proposed. This model can perform pattern shrinking and learn the affine matrix of data simultaneously, and be solved by using the alternating optimization method. Experimental results on six gene expression data show that PSLSR significantly outperforms the existing subspace segmentation methods

References

[1]  NIYOGI X. Locality preserving projections [M] //THRUN S, SAUL K, SCHOLKOPF B. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2004, 16:153-160.
[2]  CANDèS E J, LI Xiaodong, MA Yi, et al. Robust principal component analysis?[J]. Journal of the ACM(JACM), 2011, 58(3):11:1-37.
[3]  YU Lei, DING C, LOSCALZO S. Stable feature selection via dense feature groups[C] //Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data mining. New York: ACM, 2008: 803-811.
[4]  LIU Guangcan, LIN Zhouchen, YU Yong. Robust subspace segmentation by low-rank representation[C/OL] //Proceedings of the 27th International Conference on Machine Learning(ICML-10). 2010: 663-670.[2015-02-06].http://icml2010.haifa.il.ibm.com/papers/521.pdf.
[5]  LU Canyi, MIN Hai, ZHAO Zhongqiu, et al. Robust and efficient subspace segmentation via least squares regression[M] //FITZGIBBON A, LAZEBNIK S, PERONA P, et al. Lecture Notes in Computer Science. Berlin: Springer, 2012: 347-360.
[6]  FAVARO P, VIDAL R, RAVICHANDRAN A. A closed form solution to robust subspace estimation and clustering[C] //IEEE Conference on Computer Vision and Pattern Recognition(CVPR). New York: IEEE, 2011: 1801-1807.
[7]  JIANG Daxin, TANG Chun, ZHANG Aidong. Cluster analysis for gene expression data: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(11):1370-1386.
[8]  ELHAMIFAR E, VIDAL R. Sparse subspace clustering[C] //IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2009). New York: IEEE, 2009: 2790-2797.
[9]  CAI Den, HE Xiaofei, WU Xiaoyun, et al. Non-negative matrix factorization on manifold[C] //IEEE International Conference on Data Mining(ICDM2008). Los Alamitos: IEEE Computer Society, 2008: 63-72.
[10]  SHI Jianbo, MALIK J. Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905.
[11]  HOU Chenping, NIE Feiping, JIAO Yuanyuan, et al. Learning a subspace for clustering via pattern shrinking[J]. Information Processing and Management, 2013, 49(4):871-883.
[12]  ZHOU Dengyong, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[J]. Advances in Neural Information Processing Systems, 2004, 16(16):321-328.
[13]  VIDAL R. A tutorial on subspace clustering[J]. IEEE Signal Processing Magazine, 2010, 28(2):52-68.
[14]  VIDAL R, FAVARO P. Low rank subspace clustering(LRSC)[J]. Pattern Recognition Letters, 2014, 43:47-61.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133