全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

带参数的一阶周期边值问题正解的存在性及多解性
Existence and multiplicity of positive solutions of first order periodic boundary value problems with parameter

DOI: 10.6040/j.issn.1671-9352.0.2015.310

Keywords: 存在性,上下解方法,多解性,拓扑度理论,
topological degree theory
,existence,upper and lower solutions,multiplicity

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 研究了一阶周期边值问题{u'(t)+a(t)u(t)=λf(t,u(t)), t∈[0,T],u(0)=u(T)正解的个数与参数λ的关系, 其中λ>0, a∈C(R, [0,+∞))且∫T0a(θ)dθ>0, f∈C([0,T]×[0,+∞),(0,+∞))以及f∞=limu→∞ inf(f(t,u))/u=∞对任意的t∈[0,T]一致成立。 运用上下解方法及拓扑度理论, 获得存在λ*>0, 当λ>λ*时, 该问题不存在正解, λ=λ* 时, 该问题恰有一个正解; 0 * 时, 该问题至少存在两个正解。
Abstract: We study the relationship λ between and the number of positive solutions of first order periodic boundary value problems{u'(t)+a(t)u(t)=λf(t,u(t)), t∈[0,T],u(0)=u(T),where λ is a positive parameter, a∈C(R, [0,+∞))且∫T0a(θ)dθ>0, f∈C([0,T]×[0,+∞),(0,+∞))and f∞=limu→∞ inf(f(t,u))/u=∞ uniformly for t∈[0,T]. By using the method of the upper and lower solutions and topological degree techniques, we obtain that the problem has no positive solution, exactly one positive solution and at least two positive solutions, when λ>λ*, λ=λ*, 0 *, respectively

References

[1]  WENG P. Existence and global attractivity of periodic solution of integrodifferential equation in population dynamics[J]. Acta Applicandae Mathematicae, 1996, 12(4):427-434.
[2]  WU Yuexiang. Existence of positive periodic solutions for a functional differential equation with a parameter[J]. Nonlinear Analysis, 2008, 68(7):1954-1962.
[3]  HE Tieshan, YANG Fengjian, CHEN Chuanyong, et al. Existence and multiplicity of positive solutions for nonlinear boundary value problems with a parameter[J]. Computers and Mathematics with Applications, 2011, 61(11):3355-3363.
[4]  ZHANG Guang, CHENG Suisun. Positive periodic solutions of non-autonomous functinal differential equations depengding on a parameter[J]. Abstract and Applied Analysis, 2002, 7(5):279-286.
[5]  CHRISTOPHER C T. Existence of solutions to first-order periodic boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2006, 323(2):1325-1332.
[6]  朱雯雯, 徐有基. 带非线性边界条件的一阶微分方程多个正解的存在性[J]. 四川师范大学学报(自然科学版), 2016, 3(39):226-230. ZHU Wenwen, XU Youji. Multiplicity of positive solutions of first order differential equations with nonlinear boundary conditions[J]. Joural of Sichuan Normal University(Natural Science), 2016, 3(39):226-230.
[7]  WAN Aying, JIANG Daqing. Existence of positive periodic solutions for functional differential equations[J]. Kyushu Journal of Mathematics, 2002, 56(1):193-202.
[8]  WANG Haiyan. Postive periodic solutions of functional differential equations[J]. Journal of Differential Equations, 2004, 202:354-366.
[9]  GRAEF J R, KONG Lingju. Existence of multiple periodic solutions for first order functional differential equations[J]. Mathematical and Computer Modelling, 2011, 54(11-12):2962-2968.
[10]  MA Ruyun, CHEN Ruipeng, CHEN Tianlan. Existence of positive periodic solutions of nonlinearfirst-order delayed differential equations[J]. Journal of Mathematical Analysis and Applications, 2011, 384:527-535.
[11]  PADHI S, SRIVASTAVA S. Multiple periodic solutions for nonlinear first order functional differential equations with applications to population dynamics[J]. Applied Mathemaatics and Computation, 2008, 203(1):1-6.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133