|
- 2016
2维Lengyel-Epstein模型的分支结构
|
Abstract:
摘要: 在2维空间中用局部分支方法讨论Lengyel-Epstein模型的分支问题。 首先证明局部分支解的存在性,其次在分支点附近确定分支方向。
Abstract: The bifurcation problem is considered for the Lengyel-Epstein model by the local bifurcation method in R2. Local bifurcation branches of stationary solutions are constructed, and the directions of the branches near the bifurcation points are obtained
[1] | JANG Jaeduck, NI Weiming, TANG Moxun. Global bifurcation and structure of turing patterns in the 1-D Lengyel-Epstein model[J]. J Dyn Diff Equ, 2005, 16(2):297-320. |
[2] | WEI Minghua, WU Jianhua, GUO Gaihui. Turing structures and stability for the 1-D Lengyel-Epstein system[J]. J Math Chem, 2012, 50:2374-2396. |
[3] | JIN Jianyin, SHI Junping, WEI Junjie, et al. Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction[J]. Rocky Mt J Math, 2013, 43(5):1637-1674. |
[4] | KAR S, BHATTACHARJEE J K, RAY D D. A model reaction-diffusion system under spatial perturbation: theoretical and numerical investigation[J]. Eur Phys J, 2005, 43B:109-114. |
[5] | NI Weiming, TANG Moxun. Turing patterns in the Lengyel-Epstein system for the CIMA reaction[J]. Trans Am Math Soc, 2005, 357:3953-3969. |
[6] | CRANDALL M G, RABINOWITZ P H. Bifurcation from simple eigenvalues[J]. J Funct Anal, 1997, 8:321-340. |
[7] | TURING A M. The chemical basis of morphogenesis[J]. Phil Trans Roy Soc Londonser, 1952, B237:37-72. |
[8] | CASTETS V, DULOS E, BOISSONADE J, et al. Experimental evidence of a sustained Turing-type equilibrium chemical pattern[J]. Phys Rev Lett, 1990, 64:2953-2956. |
[9] | LENGYEL I, EPSTEIN I R. Modeling of turing structures in the chlorite-iodidemalonic acid-starch reaction system[J]. Science, 1991, 251:650-652. |
[10] | DU Linglong, WANG Mingxin. Hopf bifurcation analysis in the 1-D Lengyel-Epsteinreaction-diffusion model[J]. J Math Anal Appl, 2010, 366:473-485. |