全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

三角Banach代数上的对偶模Jordan导子和对偶模广义导子
Dual module Jordan derivations and dual module generalized derivations of triangular Banach algebra

DOI: 10.6040/j.issn.1671-9352.0.2015.148

Keywords: 三角Banach代数,对偶模Jordan导子,对偶模广义导子,对偶Banach双模,
triangular Banach algebra
,dual Banach bimodule,dual module generalized derivation,dual module Jordan derivation

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 设A,B是含单位元的Banach代数, M是一个Banach A,B-双模。 T=(A MB) 按照通常矩阵加法和乘法,范数定义为‖(a mb)‖=‖a‖A+‖m‖M+‖b‖B,构成三角Banach代数。通过作用(f hg)(a mb)=f(a)+h(m)+g(b), T的对偶空间 T*为(A* M*B*)。 在T*上定义模作用 (a mb)·(f hg)=(a·f+m·h b·hb·g), (f hg)·(a mb)=(f·a h·ah·m+g·b), 使其成为一个对偶Banach T-双模。从T到T*的映射称为对偶模映射。 本文对T上对偶模Jordan导子和对偶模广义导子进行讨论, 给出了T上对偶模Jordan导子是对偶模导子的一个充分条件并且对T上对偶模广义导子进行了刻画。
Abstract: Let A and B be unital Banach algebras, and let M be a Banach A, B-bimodule. Then T=(A MB) becomes a triangular Banach algebra when equipped with the usual matrix operation and a Banach space norm ‖(a mb)‖=‖a‖A+‖m‖M+‖b‖B. T*=(A* M*B*) is the dual space of T by the action (f hg)(a mb)=f(a)+h(m)+g(b). T* becomes a dual Banach T- bimodule with the module action defined by am (a mb)·(f hg)=(a·f+m·h b·hb·g), (f hg)·(a mb)=(f·a h·ah·m+g·b). The map from T into T* is called dual module map. We investigate the dual module Jordan derivations and dual module generalized derivations on T, giving a condition under which a dual module Jordan derivation is a dual module derivation and a characterization of dual module generalized derivation

References

[1]  HERSTEIN I N. Jordan derivation on prime rings[J]. Pro Amer Math Soc, 1957, 8(6):1104-1110.
[2]  BRES?AR M. Jordan derivations on semiprime rings[J]. Pro Amer Math Soc, 1988, 104(4):1003-1006.
[3]  ZHANG Jianhua, YU Weiyan. Jordan derivations of triangular algebra[J]. Linear Algebra Appl, 2006, 419(1):251-255.
[4]  HOU Jinchuan, QI Xiaofei. Generalized Jordan derivation on nest algebra [J]. Linear Algebra Appl, 2009, 430 (5-6): 1479-1485.
[5]  BENKOVI? D. Jordan derivations and antiderivations on triangular matrices[J]. Linear Algebra Appl, 2005, 397(3):234-244.
[6]  FORREST B E, MARCOUX L W. Derivation of triangular Banach algebra[J]. Indiana Univ Math J, 1996, 45(2):441-462.
[7]  FORREST B E, MARCOUX L W. Weak amenability of triangular Banach algebras[J]. Trans Amer Math Soc, 2002, 354(4):1435-1452.
[8]  张建华. 套代数上的Jordan导子[J]. 数学学报, 1998, 41(1):205-212. ZHANG Jianhua. Jordan derivations of nest algebra[J]. Acta Math Sinica, 1998, 41(1):205-212.
[9]  LI Juan, LU Fangyan. Additive Jordan derivation of reflexive algebras[J]. Math Anal Appl, 2007, 329(1):102-111.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133