|
- 2015
三角Banach代数上的对偶模Jordan导子和对偶模广义导子
|
Abstract:
摘要: 设A,B是含单位元的Banach代数, M是一个Banach A,B-双模。 T=(A MB) 按照通常矩阵加法和乘法,范数定义为‖(a mb)‖=‖a‖A+‖m‖M+‖b‖B,构成三角Banach代数。通过作用(f hg)(a mb)=f(a)+h(m)+g(b), T的对偶空间 T*为(A* M*B*)。 在T*上定义模作用 (a mb)·(f hg)=(a·f+m·h b·hb·g), (f hg)·(a mb)=(f·a h·ah·m+g·b), 使其成为一个对偶Banach T-双模。从T到T*的映射称为对偶模映射。 本文对T上对偶模Jordan导子和对偶模广义导子进行讨论, 给出了T上对偶模Jordan导子是对偶模导子的一个充分条件并且对T上对偶模广义导子进行了刻画。
Abstract: Let A and B be unital Banach algebras, and let M be a Banach A, B-bimodule. Then T=(A MB) becomes a triangular Banach algebra when equipped with the usual matrix operation and a Banach space norm ‖(a mb)‖=‖a‖A+‖m‖M+‖b‖B. T*=(A* M*B*) is the dual space of T by the action (f hg)(a mb)=f(a)+h(m)+g(b). T* becomes a dual Banach T- bimodule with the module action defined by am (a mb)·(f hg)=(a·f+m·h b·hb·g), (f hg)·(a mb)=(f·a h·ah·m+g·b). The map from T into T* is called dual module map. We investigate the dual module Jordan derivations and dual module generalized derivations on T, giving a condition under which a dual module Jordan derivation is a dual module derivation and a characterization of dual module generalized derivation
[1] | HERSTEIN I N. Jordan derivation on prime rings[J]. Pro Amer Math Soc, 1957, 8(6):1104-1110. |
[2] | BRES?AR M. Jordan derivations on semiprime rings[J]. Pro Amer Math Soc, 1988, 104(4):1003-1006. |
[3] | ZHANG Jianhua, YU Weiyan. Jordan derivations of triangular algebra[J]. Linear Algebra Appl, 2006, 419(1):251-255. |
[4] | HOU Jinchuan, QI Xiaofei. Generalized Jordan derivation on nest algebra [J]. Linear Algebra Appl, 2009, 430 (5-6): 1479-1485. |
[5] | BENKOVI? D. Jordan derivations and antiderivations on triangular matrices[J]. Linear Algebra Appl, 2005, 397(3):234-244. |
[6] | FORREST B E, MARCOUX L W. Derivation of triangular Banach algebra[J]. Indiana Univ Math J, 1996, 45(2):441-462. |
[7] | FORREST B E, MARCOUX L W. Weak amenability of triangular Banach algebras[J]. Trans Amer Math Soc, 2002, 354(4):1435-1452. |
[8] | 张建华. 套代数上的Jordan导子[J]. 数学学报, 1998, 41(1):205-212. ZHANG Jianhua. Jordan derivations of nest algebra[J]. Acta Math Sinica, 1998, 41(1):205-212. |
[9] | LI Juan, LU Fangyan. Additive Jordan derivation of reflexive algebras[J]. Math Anal Appl, 2007, 329(1):102-111. |