全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

3D打印丝素蛋白-Ⅱ型胶原软骨支架
Silk fibroin-type Ⅱ collagen cartilage scaffold fabricated by 3D printing technology

DOI: 10.6040/j.issn.1671-9352.0.2017.501

Keywords: 丝素蛋白-Ⅱ型胶原,软骨支架,率相关,细胞增殖,
cartilage scaffold
,rate-dependent,cell proliferation,silk fibroin-type Ⅱ collagen

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 运用三维制图软件Solidworks设计了软骨支架宏观结构,采用3D打印技术和冷冻干燥技术制备了丝素蛋白-Ⅱ型胶原软骨支架。通过实验测试了支架的密度、孔隙率和弹性模量;在支架上接种软骨细胞后,采用MTT法、HE染色和扫描电镜观察3种方法分析了细胞在支架上的增殖和形态。结果显示,丝素蛋白-Ⅱ型胶原软骨支架弹性模量具有率相关性,即随着应变率增加,支架的弹性模量增大;支架的密度和孔隙率分别为(0.086 6±0.008 4)g/cm3和(89.3±3.26)%。支架接种细胞培养7 d后,细胞生长增殖加快;HE染色观察发现,细胞在表层区生长最多,深层区最少;扫描电镜观察发现,支架孔径形状规则,通透性较好,细胞多分布于孔壁表面。
Abstract: The macroscopic structure of cartilage scaffold was designed by using Solidworks, and the silk fibroin-type Ⅱ collagen cartilage scaffold was prepared by 3D printing technique and freeze-drying technique. The density, porosity and elastic modulus of the scaffolds were tested by experiments. The proliferation of the cells was analyzed by MTT assay, HE staining and scanning electron microscopy. The results show that the silk fibroin-type II collagen scaffold is dependent on the strain rate. The elastic modulus of scaffold increases with the increase of strain rate. The density and porosity of scaffold were(0.086 6±0.008 4)g/cm3 and(89.3±3.26)%, respectively. The cell growth and proliferation were accelerated after 7 days of inoculation. By analyzing the results of HE staining, it is found that the cells grow most in the surface area and there are the least cells in the deep region. The microscopic images by Scanning electron microscopy(SEM)reveal that the diameter of scaffold is regular and the permeability is better. The cells are mostly distributed on the surface of the spine

References

[1]  CATROS S, GUILLEMOT F, NANDAKUMAR A, et al. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo.[J]. Tissue Engineering Part C Methods, 2012, 18(18):62-70.
[2]  周惠琼, 吴东海, 李东民. 应用酶解及氯化钠盐析方法对4个种属Ⅱ型胶原的提纯及比较[J]. 中华医学杂志, 2001, 81(11):696-697. ZHOU Huiqiong, WU Donghai, LI Dongmin, et al. Purification and comparison of four species type II collagen by enzymolysis and sodium chloride salting out[J]. Chinese Medical Journal, 2001, 81(11):696-697.
[3]  KWANSA A L, DE V R, FREEMAN J W. Tensile mechanical properties of collagen type I and its enzymatic crosslinks[J]. Biophysical Chemistry, 2016, s 214/215:1-10.
[4]  KAPFER S C, HYDE S T, MECKE K, et al. Minimal surface scaffold designs for tissue engineering[J]. Biomaterials, 2011, 32(29):6875-6882.
[5]  BOSE S, ROY M, BANDYOPADHYAY A. Recent advances in bone tissue engineering scaffolds[J]. Trends in Biotechnology, 2012, 30(10):546-554.
[6]  FENG X X, ZHANG L L, CHEN J Y, et al. Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2.[J]. International Journal of Biological Macromolecules, 2007, 40(2):105-111.
[7]  秦胜男. Ⅱ型胶原—透明质酸复合支架材料的构建及在软骨组织工程应用的初步研究[D]. 广州:暨南大学, 2010. QIN Shengnan. The construction of collagen type Ⅱ-hyaluronic acid composite biomaterial and preliminary application in the tissue-engineering cartilage[D]. Guangzhou: Jinan University, 2010.
[8]  YOO D J. Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces[J]. International Journal of Precision Engineering & Manufacturing, 2011, 12(1):61-71.
[9]  SUN W, LAL P. Recent development on computer aided tissue engineering-a review[J]. Computer Methods & Programs in Biomedicine, 2002, 67(2):85-103.
[10]  GAO L L, ZHANG C Q, DONG L M, et al. Description of depth-dependent nonlinear viscoelastic behavior for articular cartilage in unconfined compression[J]. Materials Science & Engineering C, 2012, 32(2):119-125.
[11]  陈隆坤. 双层胶原/大孔径PLA纳米纤维支架用于关节骨软骨组织工程的研究[D].杭州:浙江大学,2011. CHEN Longkun. Fabrication of bilaver collagen/microporous nanofiber scaffolds and its application to articular osteochondral tissue engineering[D]. Hangzhou: Zhejiang University, 2011.
[12]  LIU M, LIU N, ZANG R, et al. Engineering stem cell niches in bioreactors[J]. World Journal of Stem Cells, 2013, 5(4):124-135.
[13]  ZHANG X, REAGAN M R, KAPLAN D L. Electrospun silk biomaterial scaffolds for regenerative medicine[J]. Advanced Drug Delivery Reviews, 2009, 61(12):988-1006.
[14]  YIN L H, PENG P, MU X, et al. Preparation and characterization of three dimensional porous silk fibroin/gelatin composite scaffolds[J]. Journal of Functional Materials, 2013, 44(23):3388-3391.
[15]  ZHOU F, ZHANG X, CAI D, et al. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair[J]. Acta Biomaterialia, 2017, 63(2):64-75.
[16]  CASTRO-CESE?A A B, CAMACHO-VILLEGAS T A, LUGO-FABRES P H, et al. Effect of starch on the mechanical and in vitro properties of collagen-hydroxyapatite sponges for applications in dentistry[J]. Carbohydr Polym, 2016, 148(1):78-85.
[17]  ZHU H, WU B, FENG X, et al. Preparation and characterization of bioactive mesoporous calcium silicate—silk fibroin composite films[J]. Sichuan Journal of Physiological Sciences, 2011, 98(2):330-341.
[18]  ZHU H, JIAN J, SHEN J. Biomacromolecules electrostatic self-assembly on 3-dimensional tissue engineering scaffold.[J]. Biomacromolecules, 2004, 5(5):1933-1939.
[19]  WHANG K, GOLDSTICK T K, HEALY K E. A biodegradable polymer scaffold for delivery of osteotropic factors[J]. Biomaterials, 2000, 21(24):2545-2551.
[20]  OTTANI V, RASPANTI M, RUGGERI A. Collagen structure and functional implications[J]. Micron, 2001, 32(3):251-260.
[21]  DIAO H J, FUNG H S, YEUNG P, et al. Dynamic cyclic compression modulates the chondrogenic phenotype in human chondrocytes from late stage osteoarthritis[J]. Biochemical & Biophysical Research Communications, 2017, 486(1):14-21.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133