全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

Schwarz Christoffel变换数值解法
Numerical solution of Schwarz Christoffel transform

DOI: 10.6040/j.issn.1671-9352.0.2015.152

Keywords: 奇异积分,非线性方程组,Schwarz Christoffel变换,高斯雅克比型积分,Levenberg-Marquardt算法,
Gauss-Jacobi quadrature
,nonlinear equations,Schwarz Christoffel transform,singular integral,Levenberg-Marquardt algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: Schwarz Christoffel变换技术在某些工程问题处理中有着重要作用。本文研究Schwarz Christoffel变换方法及其所涉及的数值解法,采用Levenberg-Marquardt算法求解Schwarz Christoffel变换参数的非线性系统。为了提高数值计算精度,对于Schwarz Christoffel变换中出现的奇异积分问题,通过搜寻区间奇异点,细分积分区间,在子区间中采用高斯雅克比型积分,并对其权函数正交多项式零点和权值进行校正。最后给出算例验证了该方法的可行性。
Abstract: Schwarz Christoffel transformation technique has an important role to deal with engineering problem. Schwarz Christoffel transformation and its reference to numerical solution are studied.The nonlinear system of Schwarz Christoffel transform parameters is solved using Levenberg-Marquardt algorithm about. To increase the numerical accuracy, for the Singular Integral problem occurred during the course of Schwarz Christoffel transformation, search the interval singularity and sub-divide interval, which is to correct weight function and Zeros of Orthogonal Polynomials by Gauss-Jacobi quadrature in subdivide interval. Finally an example is given and the method feasible is verified

References

[1]  DRISCOLL T A. A MATLAB toolbox for Schwarz-Christoffel mapping[J]. ACM Transactions on Mathematical Software, 1996, 22(2):168-186.
[2]  DRISCOLL T A. Improvements to the Schwarz-Christoffel toolbox for MATLAB[J]. ACM Transactions on Mathematical Software, 2005, 31(2):239-251.
[3]  王刚,许汉珍,顾王明,等. 数值许瓦尔兹——克力斯托夫变换与数值高斯——雅可比型积分[J].海军工程学院学报,1994, 1(2):25-34. WANG Gang, XU Hanzhen, GU Wangming, et al. Numerical schwarz-christoffel transformation and numerical Gauss-Jacobi quadrature[J].Journal of Naval Academy of Engineering, 1994, 1(2):25-34.
[4]  王刚,陆小刚,顾王明. 槽形内域中的数值许瓦尔兹——克力斯托夫保角变换[J].海军工程学院学报,1995,1(4):16-23. WANG Gang, LU Xiaogang, GU Wangming. Numerical schwarz-christoffel conformal mapping in channel region[J]. Journal of Naval Academy of Engineering, 1995, 1(4):16-23.
[5]  田雨波,钱鉴. 施瓦茨——克里斯托弗反变换的快速收敛算法及其应用[J].电波科学学报,2003,18(1):1-6. TIAN Yubo, QIAN Jian. Rapidly convergent algorithm for inverse schwarz-christoffel transformations and its application[J].Chinese Journal of Radio Science, 2003, 18(1):1-6.
[6]  CHUANG J M, GUI Q Y, HSIUNG C C. Numerical computation of schwarz-christoffel transformation for simply connected unbounded domain[J]. Computer Methods in Applied Mechanics and Engineering, 1993, 105(1):93-109.
[7]  HU C. A software package for computing schwarz-christoffel conformal transformation for doubly connected polygonal regions[J]. ACM Transactions on Mathematical Software, 1998, 24(3):317-333.
[8]  SUNDARARAJAN N, STEPHANE B, MAHAPATRA D R. Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping[J].International Journal for Numerical Methods in Engineering, 2009, 80(1):103-134.
[9]  CROWDY Darren. The Schwarz-Christoffel mapping to bounded multiply connected polygonal domains[J]. Proceedings of The Royal Society, 2005, 146(2061):2653-2678.
[10]  PATRIZI G. Numerical methods for unconstrained optimization and nonlinear equations[J]. European Journal of Operational Research, 1985, 20(1):119-120.
[11]  COSTAMAGNA E, FANNI. Analysis of rectangular coaxial structures by numerical inversion of the Schwarz-Christoffel transformation[J].IEEE Transactions on Magnetics, 1992, 28(2):1454-1457.
[12]  COSTAMAGNA E. Numerical inversion of the Schwarz-Christoffel conformal transformation: strip-line case studies[J]. Microwave and Optical Technology Letters, 2001, 28(3):179-183.
[13]  COSTAMAGNA E. A new approach to standard Schwarz-Christoffel formula calculations[J]. Microwave and Optical Technology Letters, 2002, 32(3):196-199.
[14]  刘浩.大规模非线性方程组和无约束优化方法研究[D].上海:南京航空航天大学,2008. LIU Hao. Research on methods for large-scale nonlinear equations and unconstrained optimization[D]. Shanghai: Nanjing University of Aeronautics and Astronautics, 2008.
[15]  HOUGH D M. Asymptotic Gauss-Jacobi quadrature error estimation for Schwarz-Christoffel integrals[J]. Journal of Approximation Theory, 2007, 146(2):157-173.
[16]  TREFETHEN L N. Numerical computation of the Schwarz-Christoffel transformation[J].Society for Industrial and Applied Mathematics, 1980, 1(1):82-102.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133