|
- 2016
关于有限群Coleman自同构的一个注记
|
Abstract:
摘要: 设G为有限群,KG且K为非交换单群,若G/K为交换群或非交换单群, 则G的每个Coleman自同构为内自同构,即OutCol(G)=1。特别地,这样的有限群G具有正规化子性质。
Abstract: Let K be a normal subgroup of a finite group G and K be a non-abelian simple group. If G/K is a abelian group or a non-abelian simple group. It is shown that every Coleman automorphism of G is an inner automorphism, that is, OutCol(G)=1. In particular, the normalizer property holds for G
[1] | HERTWECK M. Class-preserving Coleman automorphisms of finite groups[J]. Monatash Math, 2002, 136:1-7. |
[2] | HERTWECK M, KIMMERLE W. Coleman automorphisms of finite groups[J]. Math Z, 2002, 242:203-215. |
[3] | GROSS F. Automorphisms which centralizes a Sylow <i>p</i>-subgroup[J]. J Algebra, 1982, 77(1):202-233. |
[4] | HERTWECK M. Class-preserving automorphisms of finite groups[J]. J Algebra, 2001, 241:1-26. |
[5] | 海进科,李正兴. 有限 ATI-群的类保持Coleman自同构[J]. 数学学报, 2010, 53(5):891-896. HAI Jinke, LI Zhengxing. Class-preserving Coleman automorphisms of finite ATI-groups[J]. Acta Mathematica Sinica, 2010, 53(5):891-896. |
[6] | SEHGAL S K. Units in integral group rings[M]. Harlow: Longman Scientific and Technical Press, 1993. |
[7] | HERTWECK M. A counterexample to the isomorphism problem for integral group rings[J]. Ann Math, 2001, 154:115-138. |
[8] | 海进科, 王玉雷. 具有一个 T.I. Sylow 2-子群的有限群的类保持Coleman自同构[J]. 数学学报, 2008, 51(6):1115-1118. HAI Jinke, WANG Yulei. Class-preserving Coleman automorphisms of finite groups with a T.I. Sylow 2-subgroup[J]. Acta Mathematica Sinica, 2008, 51(6):1115-1118. |
[9] | ROSE J S. A course on group theory[M]. Cambridge: Cambridge University Press, 1978. |
[10] | DADE E C. Sylow-centralizing sections of outer automorphism groups of finite groups are nilpotent[J]. Math Z, 1975, 141:57-76. |