全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

交换半环上半线性空间的维数
Dimensions of semilinear spaces over commutative semirings

DOI: 10.6040/j.issn.1671-9352.0.2014.229

Keywords: 维数,半线性变换,交换半环,半线性空间,
commutative semiring
,semilinear spaces,dimensions,semilinear transformation

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 探究了交换半环上半线性空间的维数。给出了交换半环L上半线性空间Vn维数为n的充要条件且得到了Vn与V1之间的关系。此外介绍了半线性空间中半线性变换A及其值域A(V)与核A-1(0)的概念, 并证明了等式 dim(A(Vn))+dim(A-1(0))=dim(Vn)。
Abstract: The dimensions of semilinear spaces over commutative semirings L are investigated. Some necessary and sufficient conditions that dim(Vn)=n are given, and the relationship between Vn and V1 are obtained, where Vn and V1 are finite dimensional semilinear spaces over L. Moreover, the concepts of semilinear transformation A, and the range A(Vn) and nuclear A-1(0) of A are introduced and the equation dim(A(Vn))+dim(A-1(0))=dim(Vn) is proved

References

[1]  CECHLAROVA K, PLAVKA J. Linear independence in bottleneck algebras[J]. Fuzzy Sets and Systems, 1996, 77:337-348.
[2]  CAO Z Q, KIM K H, ROUSH F W. Incline algebra and applications[M]. New York: John Wiley, 1984.
[3]  KIM K H, ROUSH F W. Generalized fuzzy matrices[J]. Fuzzy Sets and Systems, 1980, 4:293-315.
[4]  KANAN A M, PETROVIC Z Z. Note on cardinality of bases in semilinear spaces over zerosumfree semirings[J]. Linear Algebra Appl, 2013, 439:2795-2799.
[5]  SHU Qianyu, WANG Xueping. Standard orthogonal vectors in semilinear spaces and their applications[J]. Linear Algebra Appl, 2012, 437:2733-2754.
[6]  SHU Qianyu, WANG Xueping. Dimensions of <em>L</em>-semilinear spaces over zerosumfree semirings[C]// IFSA World Congress and NAFIPS Annual Meeting. Edmonton, Canada: IEEE, 2013: 35-40.
[7]  GOLAR J S. Semirings and their applications[M]. Dordrecht: Kluwer Academic Publishers, 1999.
[8]  REUTENAUER C, STRAUBING H. Inversion of matrices over a commutative semiring[J]. J Algebra, 1984, 88:350-360.
[9]  ZHAO Shan, WANG Xueping. Bases in semilinear spaces over join-semirings[J]. Fuzzy Sets and Systems, 2011, 182:93-100.
[10]  SHU Qianyu, WANG Xueping. Bases in semilinear spaces over zerosumfree semirings[J]. Linear Algebra Appl, 2011, 435:2681-2692.
[11]  DI-NOLAR A, LETTIERI A, PERFILIEVA I. Algebraic analysis of fuzzy systems[J]. Fuzzy Sets and Systems, 2007, 158:1-22.
[12]  TAN Yijia. Bases in semimodules over commutative semirings[J]. Linear Algebra Appl, 2014, 443:139-152.
[13]  BUTKOVIC P. Max-algebra: the linear algebra of combinatorics[J]. Linear Algebra Appl, 2003, 367:313-335.
[14]  ZHAO Shan, WANG Xueping. Invertible matrices and semilinear spaces over commutative semirings[J]. Information Sciences, 2010, 180:5115-5124.
[15]  CUNINGHAME-GREEN R A. Minimax algebra[M]// Lecture Notes in Economics and Mathematical Systems. Berlin: Springer, 1979.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133