|
- 2015
3-正则Halin图的完备染色
|
Abstract:
摘要: 研究了3-正则(或立方)Halin图的完备染色,针对非轮图的3-正则Halin图,提出了一种具体的完备染色,简单确定了非轮图(Wn)的3-正则Halin图的完备色数是6,且使得3-正则Halin图的完备染色可用计算机实现。
Abstract: The complete coloring of 3-regular Halin graphs is studied. A procedure, for completely coloring an 3-regular Halin graph which is not a wheel graph, is proposed. By this procedure, the conclusion that χC(G)=6, where G(≠W4) is a 3-regular Halin graph, can be easily obtained. Furthermore, this implies that the complete coloring of a 3-regular Halin graph can be solved by computer
[1] | BORODIN O V. Consistnet coloring of graphs on the sphere[J]. Metody Diskner Analyza, 1987, 45:21-27. |
[2] | 刘林忠, 张忠辅, 王建方. 最大度不小于6 的伪-Halin图的完备色数[J].数学研究与评论,2002, 22:663-668. LIU Linzhong, ZHANG Zhongfu, WANG Jianfang. On the complete chromatic number of pseudo-Halin graphs with Δ<em>(G</em>)≥6[J]. Journal of Mathematical Research and Exposition, 2002, 22:663-668. |
[3] | ZHANG Zhongfu, WANG Jianfang, WANG Weifan, et al. The complete chromatic number of some planar graphs[J]. Science in China: Ser A, 1993(10):1169-1177. |
[4] | HALIN R. Studies on minimally n-connected graphs[J]. Combinatorial Mathematics and its Applications, 1971: 129-136. |
[5] | KRONK H V, MITCHEM J. A seven-color theorem on the sphere[J]. Discrete Math, 1971, 5:253-260. |
[6] | BONDY J A, MURTY U S R. Graph theory with application[M]. New York: Macmillan, 1976. |
[7] | 吴建良. 外平面图的完备染色[J]. 山东矿业学院学报,1996, 2: 220-222. WU Jianliang. The entire coloring of outerplanar graphs[J]. Journal of Shandong Mining Institute, 1996, 2:220-222. |
[8] | 姚明,姚兵,陈祥恩. 立方Halin图的完备色数[J].山东大学学报:理学版,2012, 47(2):65-70. YAO Ming, YAO Bing, CHEN Xiang'en. On complete chromatic numbers of cubic Halin graphs[J]. Journal of Shandong University: Natural Science, 2012, 47(2):65-70. |