|
- 2015
C-拟正则半群上的可许同余对
|
Abstract:
摘要: 令半群S为Clifford半群K的诣零扩张,Q为其Rees商半群S/K。引入S的可许同余对(δ,ω)的概念,其中δ和ω分别为诣零半群Q和Clifford半群K上的同余,证明了S上的任何同余σ都可由S的一个可许同余对唯一表示。另外,关于S上的任何同余σ,用σK表示σ在Clifford半群K上的限制,即σK=σ|K,而σQ=(σ∨ρK)/ρK,其中ρK为S的理想K诱导的Rees同余,还证明了映射Γ:σ→(σQ,σk)为从S上的所有同余集合到S的所有可许同余对集合上的保序双射。最后,讨论了S上的同余是正则同余的条件。
Abstract: Let S be a nil-extension of a Clifford semigroup K by a nil semigroup Q=S/K. By introducing a concept of admissible congruence pairs (δ,ω), where δ is a congruence on a nil semigroup Q and ω is a congruence on a Clifford semigroup K respectively, it is proved that every congruence σ on S can be uniquely represented by an admissible congruence pair on S. In addition, for any congruence σ on S, suppose that σK is a restriction of σ on a Clifford semigroup K, that is, σK=σ|K and σQ=(σ∨ρK)/ρK, where ρK is a Rees congruence on S induced by a ideal K of S, it is proved that there is an order-preserving bijection Γ:σ→(σQ,σk) from the set of all congruences on S onto the set of all admissible congruence pairs on S. Finally, a condition has been given for a congruence which is a regular congruence on S
[1] | SHUM K P, REN Xueming. On the structure of completely Archimedean semigroups[M]// Proceeding of the International Conference in Mathematics at Kaushing. Taibei: World Sci Publ, 1995: 193-202. |
[2] | 任学明,郭聿琦,岑嘉评. Clifford拟正则半群[J].数学年刊,1994,15(3):319-325. REN Xueming, GUO Yuqi, CEN Jiaping. Clifford quasi-regular semigroups[J]. Chinese Annals of Mathematics, 1994, 15(3):319-325. |
[3] | BOGDANOVIC S. Semigroups with a system of subsemigroups[M]. Yugoslavia: NoviSad, 1985: 143-147. |
[4] | WARNE R J. On the structure of TC semigroups[M]// C Bonzini, A Cherubini,C Tibiletti. Semigroups. River Edge, NJ: World Sci Publ, 1993: 300-310. |
[5] | YU Bingjun. The structure on strict π-regular semigroups[J]. Science China Mathematics, 1990(11):1159-1161. |
[6] | REN Xueming, GUO Yuqi. E-ideal quasi-regular semigroups[J]. Science China Mathematics, 1989(12):1437-1446. |
[7] | SHUM K P, GUO Yuqi, REN Xueming. Admissible congruence pairs on quasiregular semigroups[J]. Algebras Groups and Geometries, 1999, 16:127-144. |
[8] | HOWIE J M. An introduction to semigroup theory[M]. New York: Academic Press, 1976. |