|
- 2018
椭圆方程柯西问题磨光正则化参数的后验选取
|
Abstract:
摘要: 通过将带有参数的Gaussian函数和测量数据作卷积,把不适定问题转化为适定问题进行求解,给出基于Morozov偏差原理的后验参数选取规则并得到了精确解和正则近似解之间的误差估计。数值实验表明了磨光正则化后验参数选取规则的有效性。
Abstract: We transform the ill-posed problem into a well-posed problem by convolutioning the Gaussian function with parameters and the measurement data. A posteriori parameter choice rule is given which is based on Morozovs discrepancy principle and the error estimates between the exact solution and its approximation are also given. Numerical experiments show the validity of mollification regularization posteriori parameter choice rule
[1] | HADAMARD J. Lecture on the Cauchy problem in linear partial differential equations[M]. New Haven: Yale University Press, 1923. |
[2] | WEI Ting, CHEN Yonggang, LIU Jichuan. A variational-type method of fundamental solutions for a Cauchy problem of Laplaces equation[J]. Applied Mathematical Modelling, 2013, 37(3):1039-1053. |
[3] | FU Chuli, LI Haifeng, QIAN Zhi, et al. Fourier regularization method for solving a Cauchy problem for the Laplace equation[J]. Inverse Problems in Science and Engineering, 2008, 16(2):159-169. |
[4] | VANI C, AVUDAINAYAGAM A. Regularized solution of the Cauchy problem for the Laplace equation using Meyer wavelets[J]. Mathematical and Computer Modelling, 2002, 36(9-10):1151-1159. |
[5] | XIONG Xiangtuan, SHI Wanxia, FAN Xiaoyan. Two numerical methods for a Cauchy problem for modified Helmholtz equation[J]. Applied Mathematical Modelling, 2011, 35(10):4951-4964. |
[6] | 邓志亮.两类不适定问题的正则化方法研究[D].兰州:兰州大学,2010. DENG Zhiliang. The study of the regularization methods for two classes of ill-posed problems[D]. Lanzhou: Lanzhou University, 2010. |
[7] | VIANO G A. Solution of the Hausdorff moment problem by the use of Pollaczek polynomials[J]. Journal of Mathematical Analysis and Applications, 1991, 156(2):410-427. |
[8] | JOHNSON C R. Computational and numerical methods for bioelectric field problems[J]. Critical Reviews in Biomedical Engineering, 1997, 25(1):1-81. |
[9] | GORENFLO R. Funktionentheoretische bestimmung des aussenfeldes zu einer zweidimensionalen magnetohydrostatischen konfiguration[J]. Zeitschrift Für Angewandte Mathematik and Physik, 1965, 16(2):279-290. |
[10] | COLLI-FRANZONE P,MAGENES E. On the inverse potential problem of electrocardiology[J]. Calcolo, 1979, 16(4):459-538. |
[11] | ALESSANDRINI G. Stable determination of a craek from boundary measurements[J]. Proceedings of the Royal Society of Edinburgh, 1993, 123(3):497-516. |
[12] | COLLI-FRANZONE P, TENTONI L G, BARUFFI C V, et al. A mathematical procedure for solving the inverse potential problem of electrocardiography. Analysis of the time-space accuracy from in vitro experimental data[J]. Mathematical Biosciences, 1985, 77(1):353-396. |
[13] | 刘松树.几类偏微分方程不适定问题的正则化方法[D].哈尔滨:哈尔滨工业大学,2014. LIU Songshu. Regularization methods for ill-posed problems of several partial differential equtions[D]. Harbin:Harbin Institute of Technology, 2014. |
[14] | XIONG Xiangtan, FU Chuli. Central difference regularization method for the Cauchy problem of the Laplaces equation[J].Applied Mathematics and Computation, 2006, 181(1):675-684. |
[15] | QIN Haihua, WEI Ting. Quasi-reversibility and truncation methods to solve a Cauchy problem for the modified Helmholtz equation[J]. Mathematics and Computers in Simulation, 2009, 80(2):352-366. |
[16] | CHENG Hao, FENG Xiaoli, FU Chuli. A mollification regularization method for the Cauchy problem of an elliptic equation in a multi-dimensional case[J]. Inverse Problems in Science and Engineering, 2010, 18(7):971-982. |
[17] | FU Chuli, XIONG Xiangtuan, QIAN Zhi. Fourier regularization method for solving a cauchy problem for the Laplace equation[J]. Inverse Problems in Science Engineering, 2008, 16(2):159-169. |
[18] | HàO D N, HIEN P M, SAHLI H. Stability results for a Cauchy problem for an elliptic equation[J]. Inverse Problems, 2007, 23(1):421-461. |