全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

图的邻点可区别全染色算法
The algorithm for adjacent-vertex-distinguishing total coloring of graphs

DOI: 10.6040/j.issn.1671-9352.0.2014.145

Keywords: ,算法,邻点可区别全染色,邻点可区别全色数,
adjacent-vertex-distinguishing total chromatic number
,adjacent-vertex-distinguishing total coloring,graph,algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 在图G的一个正常全染色下,G中任意一点v的色集合是指点v的色以及与v关联的全体边的色所构成的集合.图G的邻点可区别全染色就是图G的正常全染色且使相邻点的色集合不同,其所用最少颜色数称为图G的邻点可区别全色数.设计了一种启发式的邻点可区别全染色算法,该算法根据邻点可区别全染色的约束规则,确定四个子目标函数和一个总目标函数,然后借助染色矩阵及色补集合逐步迭代交换,每次迭代交换后判断目标函数值,当目标函数值满足要求时染色成功.实验结果表明,该算法可以得到图的邻点可区别全色数,并且算法的时间复杂度不超过O(n3).
Abstract: With a proper total coloring of graph G, for any vertex v, its color set is made up of colors of v ertex vand all its incident edges. An adjacent vertex distinguishing total coloring of a graph G is a proper total coloring, such that any pair of adjacent vertices are incident to distinct sets of colors.The minimum coloring number is called the adjacent-vertex-distinguishing total chromatic number of G. According to adjacent-vertex-distinguishing total coloring rules, this paper presents a heuristic algorithm for the adjacent-vertex-distinguishing total coloring. The algorithm ascertains four sub-functions and one generic function and then iterates gradually in proper sequence with the help of the color matrix and complementary set. When the generic function value equals to zero, we say that the current coloring is successful. The experimental results show that the algorithm can obtain the chromatic number of the adjacent-vertex-distinguishing total coloring of graphs and the time complexity is not more than O(n3)

References

[1]  ZHANG Zhongfu, CHEN Xiangen, LI Jingwen, et al. On adjacent vertex distinguishing total coloring of graphs[J].Sci China: Ser A, 2005, 48(3):289-299.
[2]  CHE N Xiangen. On the adjacent vertex-distinguishing total coloring number of graphs with Δ=3[J]. Discrete mathematics, 2008, 308(17):4003-4007.
[3]  BALISTER P N, RIORDAN M, SCHELP R H. Vertex-distinguishing proper edge-colorings[J].Graph Theory, 2003, 42(2):95-109.
[4]  ZHANG Zhongfu, LIU Linzhong, WANG Jianfang. Adjacent strong edge coloring of graphs[J]. Applied Mathematics Letters, 2002, 15(3):623-626.
[5]  Jonathan Hulgan. Concise proofs for adjacent vertex-distinguishing total colorings[J]. Discrete Mathematics, 2009, 309(8):2548-2550.
[6]  BONDY J A, MURTY U S R. Graph theory with applications[M]. New York: The Macmillan Press Ltd, 1976.
[7]  BURRIS A C, SCHELP R H. Vertex-distinguishing proper edge-coloring[J]. Graph Theory, 1997, 26(2):70-82.
[8]  Hervé Hocquard, Micka?l Montassier. Adjacent vertex-distinguishing edge coloring of graphs with maximum degree at least five[J]. Electronic Notes in Dis Math, 2011, 38:457-462.
[9]  ZHANG Zhongfu, QIU Pengxiang, XU Baogen, et al. Vertex distinguishing total coloring of graphs[J]. Ars Combinatoria, 2008, 87(2):33-45.
[10]  VIZING V G. On an estimate of the chromatic class of a p-graph[J]. Discret Analiz, 1964, 3:25-30.
[11]  BEHZAD M. Graphs and their chromatic numbers[D]. Michigan: Michigan State University, 1965.
[12]  HUANG Danjun, WANG Weifan, YAN Chengchao. A note on the adjacent vertex distinguishing total chromatic number of graphs[J]. Dis Math, 2012, 312(24):3544-3546.
[13]  文丽,吴良大. 高等数学[M]. 北京:北京大学出版社,1999. WEN Li, WU Liangda. Advanced maths[M]. Beijing: Peking University Press, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133