全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于深层神经网络(DNN)的汉-越双语词语对齐方法
A bilingual word alignment method of Vietnamese-Chinese based on deep neural network

DOI: 10.6040/j.issn.1671-9352.3.2014.289

Keywords: DNN,词语对齐,汉语,越南语,
word alignment
,DNN,Vietnamese,Chinese

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 针对汉-越双语因语言特点差异较大而导致难以实现词语自动对齐的问题,提出了一种基于深层神经网络(deep neural network, DNN)的汉-越双语词语对齐方法。该方法先将汉-越双语词语转化成词向量,作为DNN模型的输入,再通过调整和扩展HMM模型,并融入上下文信息,构建DNN-HMM词语对齐模型。实验以HMM模型和IBM4模型为基础模型,通过大规模的汉-越双语词语对齐任务表明,该方法的准确率、召回率较两个基础模型都有明显的提高,而词语对齐错误率大大降低。
Abstract: It is difficult to achieve auto-alignment between Vietnamese and Chinese, because their syntax and structure are quite different. In this case, we present a novel method for the Vietnamese-Chinese word alignment based on DNN(deep neural network). Firstly, we should convert Vietnamese-Chinese bilingual word into word embedding, and as the input within DNN. Secondly, DNN-HMM word alignment model is constructed by expanding HMM model, which also integrating the context information. The basic model of the experiments are HMM and IBM4. The results of large-scale Vietnamese-Chinese bilingual word alignment task show that this method not only significantly improved its accuracy and recall rate than the two basic models, but also greatly reduced word alignment error rate

References

[1]  YANG Nan, LIU Shujie, LI Mu, et al. Word alignment modeling with context dependent deep neural network[C] //Proceedings ofthe 51st Annual Meeting of the Association for Computational Linguistics. Somerset: ACL, 2013: 166-175.
[2]  Franz Josef Och, Hermann Ney. A systematic comparison of various statistical alignment models[J].Computational Linguistics, 2003, 29(1):19-51.
[3]  LIU Y, LIU Q, LIN S. Discriminative word alignment by linear modeling[J]. Computational Linguistics, 2010, 36(3):303-339.
[4]  HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554.
[5]  COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing(almost)from scratch[J]. The Journal of Machine Learning Research, 2011, 12:2493-2537.
[6]  GOLDBERG Y, LEVY O. word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method[EB/OL].[2014-10-24].http://arxiv.org/pdf/1402.3722v1.pdf.
[7]  ZHENG Xiaoqing, CHEN Haiyang, XU Tianyu. Deep learning for Chinese word segmentation and POS tagging[C] //Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2013:647-657.
[8]  DAHL G E, YU D, DENG L, et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J]., IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1):30-42.
[9]  BENGIO Y. Learning deep architectures for AI[M]. Now Publishers Inc Hanover, 2009.
[10]  BROWN P F, PIETRA V J D, PIETRA S A D, et al. The mathematics of statistical machine translation:parameter estimation[J]. Computational Linguistics, 1993, 19(2):263-311.
[11]  BLUNSOM P, COHN T. Discriminative word alignment with conditional random fields[C] //Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics. Philadelphia:Association for Computational Linguistics, 2006:65-72.
[12]  NIEHUES J, WAIBEL A. Continuous space language models using restricted boltzmann machines[C] //Proceedings of the 9th International Workshop on Spoken Language Translation(IWSLT).[S.l.] :[s.n.] , 2012:1-48.
[13]  MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].[2014-10-24]. http://arxiv.org/pdf/1301.3781.pdf.
[14]  KLEMENTIEV A, TITOV I, BHATTARAI B. Nducing crosslingual distributed representations of words [C] //Proceedings of the International Conference on Computational Linguistics. Bombay: 2012 Organizing Committee, 2012.
[15]  LE H P, HO T V. A maximum entropy approach to sentence boundary detection of Vietnamese texts[C] //IEEE International Conference on Research, Innovation and Vision for the Future-RIVF 2008. New York: IEEE, 2008:1-6.
[16]  HUYêN N T M, ROUSSANALY A, VINH H T. A hybrid approach to word segmentation of Vietnamese texts[J]. Language and Automata Theory and Applications, 2008:240-249.
[17]  越南语词法分析系统 [EB/OL]. [2014-11-12].http://www.loria.fr/~lehong/tools/vn-Tokenizer.php.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133