全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

元胞自动机中的Besicovitch-Eggleston型集合
Besicovitch-Eggleston type sets in cellular automata

DOI: 10.6040/j.issn.1671-9352.0.2015.186

Keywords: 符号空间,元胞自动机,Hausdorff维数,
cellular automata
,Hausdorff dimension,symbolic space

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 考虑了一类元胞自动机中的Besicovitch-Eggleston型集合。由于与某些移位系统等价,可以计算出这些集合的Hausdorff维数。
Abstract: Consider a class of Besicovitch-Eggleston type sets associated cellular automata. Hausdorff dimensions of these sets are determined by tranforming them into some shift dynamics

References

[1]  WALTERS P. An introduction to Ergodic theory[M] // Graduate Texts in Mathematics. New York: Springer, 2000.
[2]  HEDLUND G A. Endomorphisms and automorphisms of the shift dynamical system[J]. Mathematical Systems Theory, 1969, 3(4):320-375.
[3]  BESICOVITCH A S. On the sum of digits of real numbers represented in the dyadic system[J]. Mathematische Annalen, 1935, 110(1):321-330.
[4]  SHERESHEVSKY M A. Ergodic properties of certain surjective cellular automata[J]. Monatshefte Für Mathematik, 1992, 114(3-4):305-316.
[5]  EGGLESTON H G. The fractional dimension of a set defined by decimal properties, quarterly[J]. Journal of Mathematics Oxford Series, 1949, 47:31-40.
[6]  XIE Y, WEN Z. Dimensions of modified Besicovitch-Eggleston sets[J]. Science in China, 2006, 49(2):245-254.
[7]  文志英. 分形几何的数学基础[M]. 上海:上海科技教育出版社,2000. WEN Zhiying. Mathematical foundation of fractal geometry[M]. Shanghai: Shanghai Scientific and Technological Education Publishing House, 2000.
[8]  LIND Douglas, MARCUS Brian. An introduction to symbolic dynamics and coding[M]. Cambridge: Cambridge University Press, 1995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133