|
- 2016
元胞自动机中的Besicovitch-Eggleston型集合
|
Abstract:
摘要: 考虑了一类元胞自动机中的Besicovitch-Eggleston型集合。由于与某些移位系统等价,可以计算出这些集合的Hausdorff维数。
Abstract: Consider a class of Besicovitch-Eggleston type sets associated cellular automata. Hausdorff dimensions of these sets are determined by tranforming them into some shift dynamics
[1] | WALTERS P. An introduction to Ergodic theory[M] // Graduate Texts in Mathematics. New York: Springer, 2000. |
[2] | HEDLUND G A. Endomorphisms and automorphisms of the shift dynamical system[J]. Mathematical Systems Theory, 1969, 3(4):320-375. |
[3] | BESICOVITCH A S. On the sum of digits of real numbers represented in the dyadic system[J]. Mathematische Annalen, 1935, 110(1):321-330. |
[4] | SHERESHEVSKY M A. Ergodic properties of certain surjective cellular automata[J]. Monatshefte Für Mathematik, 1992, 114(3-4):305-316. |
[5] | EGGLESTON H G. The fractional dimension of a set defined by decimal properties, quarterly[J]. Journal of Mathematics Oxford Series, 1949, 47:31-40. |
[6] | XIE Y, WEN Z. Dimensions of modified Besicovitch-Eggleston sets[J]. Science in China, 2006, 49(2):245-254. |
[7] | 文志英. 分形几何的数学基础[M]. 上海:上海科技教育出版社,2000. WEN Zhiying. Mathematical foundation of fractal geometry[M]. Shanghai: Shanghai Scientific and Technological Education Publishing House, 2000. |
[8] | LIND Douglas, MARCUS Brian. An introduction to symbolic dynamics and coding[M]. Cambridge: Cambridge University Press, 1995. |