全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

结合主动学习和自动标注的评价对象抽取方法
Opinion target extraction with active-learning and automatic annotation

DOI: 10.6040/j.issn.1671-9352.3.2014.106

Keywords: 情感分析,评价对象抽取,主动学习,自动标注,
opinion target extraction
,active-learning,automatic annotation,sentiment analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 提出了结合主动学习和自动标注的评价对象抽取方法。具体实现过程中,首先,利用少量的已标注样本训练分类器,对非标注样本进行测试,获取自动标注结果及其置信度:其次,通过置信度计算每个样本的整体置信度,挑选出低置信度即不确定性高的样本待标注:最后,对待标注样本中置信度低的词语进行人工标注,而置信度高的部分则采用自动标注结果。实验表明,该方法可以在确保抽取性能的同时有效地减小人工标注语料的开销。
Abstract: An opinion target extraction method combined active-learning and automatic annotation is introduced. Firstly, the results of automatically annotation with the confidence are obtained by using a few of labeled corpus to train the classifier to test the unlabeled samples: secondly, the samples of low confidence is annotated by calculating the confidence of every sample: finally, the words of low confidence in the selected samples is annotated manually, while the others are adopted the results of automatic annotation. The empirical results demonstrate that the proposed method effectively reduces the annotation cost and achieves good performance on opinion target extraction

References

[1]  ZHUANG Li, JING F, ZHU X. Movie review mining and summarization[C]//Proceedings of CIKM-2006. New York: ACM, 2006: 43-50.
[2]  王荣洋,鞠久鹏,李寿山,等. 基于CRFs的评价对象抽取特征研究[J]. 中文信息学报,2012,26(2):56-61. WANG Rongyang, JU Jiupeng, LI Shoushan, et al. Feature engineering for CRFs based opinion target extraction[J]. Journal of Chinese Information Processing, 2012, 26(2):56-61.
[3]  龙军, 殷建平, 祝恩, 等. 主动学习研究综述[J]. 计算机研究与发展, 2008, 45(S1):300-304. LONG Jun, YIN Jianping, ZHU En, et al. A survey of active learning[J]. Journal of Computer Research and Development, 2008, 45(Suppl):300-304.
[4]  LEWIS D D, GALE W A. A sequential algorithm for training text classifiers[C]//Proceedings of the 17th ACM Int'l Conf on Research and Development in Information Retrieval. New York: Springer-verlag, 1994: 3-12.
[5]  FREUND Y, SEUNG H S, SHAMIR E, et al. Selective sampling using the query by committee algorithm[J]. Machine learning, 1997, 28(2-3): 133-168.
[6]  PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques[C]//Proceedings of EMNLP-02. Stroudsburg: Association for Computational Linguistics, 2002:79-86.
[7]  LEWIS D, GALE W. Training text classifiers by uncertainty sampling[C]//Proceedings of SIGIR-94.London:Springer-verlag, 1994: 3-12.
[8]  MUSLEA I, MINTON S, KNOBLOCK C A. Active learning with multiple views[J]. Journal of Artificial Intelligence Research, 2006, 27(1):203-233.
[9]  JAKOB N. GUREVYCH I. Extracting opinion targets in a single and cross-domain setting with conditional random fields[C]//Proceedings of EMNLP-2010.Stroudsburg: Association for Computational Linguistics, 2010: 1035-1045.
[10]  LI Binyang, ZHOU L, FENG S, et al. A unified graph model for sentence-based opinion retrieval[C]// Proceedings of ACL.Stroudsburg:Association for Computational Linguistics, 2010:1367-1375.
[11]  PANG Bo, LEE L. Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2(1-2):1-135.
[12]  MUSLEA I, MINTON S, KNOBLOCK C. Active learning with multiple view[J]. Journal of Artificial Intelligence Research, 2006,27: 203-233
[13]  MCCALLUM A, NIGAM K. Employing EM in pool-based active learning for text classification[C]//Proceedings of the 15th Int'l Conf on Machine Learning. New York: ACM, 1998: 500-512.
[14]  赵妍妍,秦兵,刘挺.文本情感分析[J]. 软件学报, 2010, 21(8):1834-1848. ZHAO Yanyan, QIN Bing, LIU Ting. Sentiment analysis[J]. Journal of Software, 2010, 21(8):1834-1848.
[15]  HU Minqing, LIU B. Mining opinion features in customer reviews[C]//Proceedings of AAAI-2004. California: AAAI Press, 2004: 755-760.
[16]  宗成庆. 统计自然语言处理[M]. 北京:清华大学出版社,2008:1-475. ZONG Chengqing. Statistics natural language processing[M]. Beijing: Tsinghua University Press, 2008:1-475

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133