全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

对多重休假的带启动-关闭期的Geom/G/1排队性能的仿真实验分析
Performance analysis of Geom/G/1 queue with multiple vacations and set-up/close down period based on simulation experiment

DOI: 10.6040/j.issn.1671-9352.0.2014.383

Keywords: Merrifield-Simmons指标, r叶树, 极值,仿真实验,排队,启动期,关闭期,性能分析,
Merrifield-Simmons index
, r-leave tree, Extrema,queue,performance analysis,set-up period,close down period,simulation experiment

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 利用仿真实验方法研究多重休假的带启动-关闭期的Geom/G/1排队系统,统计出系统的稳态队长及顾客的平均等待时间随系统参数的变化趋势,与已知文献的理论分析结果进行对比,发现这两种方法得出的性能指标的变化趋势完全吻合,从而说明仿真实验方法的有效性.
Abstract: A Geom/G/1 queue with multiple vacations and set-up/close down period was studied by using the simulation experiment method, and the change trend of the mean queue length and the waiting time of customer with parameters were calculated. The simulation results were compared with the theoretical analysis results, and the change trends which were obtained by using two methods were consistent. Therefore, this method was effective

References

[1]  GAO Shan, WANG Jinting, ZHANG Deran. Discrete-time GI<sup><em>X</em></sup>/Geo/1/N queue with negative customers and multiple working vacations [J]. Journal of the Korean Statistical Society, 2013, 42(4):515-528.
[2]  LI Jihong. Analysis of the discrete-time Geo/G/1 working vacation queue and its application to network scheduling [J]. Computers & Industrial Engineering, 2013, 65(4): 594-604.
[3]  Lee Se Won, Lee Ho Woo, Baek Jung Woo. Analysis of discrete-time MAP/G/1 queue under workload control [J]. Performance Evaluation, 2012, 69(2): 71-85.
[4]  吴旭光, 杨惠珍, 王新民. 计算机仿真技术 [M]. 北京: 化学工业出版社, 2005. WU Xuguang, YANG Huizhen, WANG Xinmin. The computer simulation technology [M]. Beijing: Chemical Industry Press, 2005.
[5]  WU Jinbiao, WANG Jianxin, LIU Zaiming. A discrete-time Geo/G/1 retrial queue with preferred and impatient customers [J]. Applied Mathematical Modelling, 2013, 37(4): 2552-2561.
[6]  林闯. 计算机网络和计算机系统的性能评价[M]. 北京: 清华大学出版社, 2001. LIN Chuang. Performance evaluation of computer network and computer system [M]. Beijing: Tsinghua University Press, 2001.
[7]  马占友,徐秀丽,田乃硕. 多重休假的带启动—关闭期的Geom/G/1排队 [J]. 运筹与管理, 2004, 13(5): 21-25. MA Zhanyou, XU Xiuli, TIAN Naishuo. The Geom/G/1 queue with multiple vacation and server set-up/close times [J]. Operations Research and Management Science, 2004, 13(5): 21-25.
[8]  Takagi Hideaki. Queueing analysis (Volume 3): discrete-time systems [M]. North-Holland Publishing Company, 1993.
[9]  田乃硕. 休假随机服务系统[M]. 北京: 北京大学出版社, 2001. TIAN Naishuo. Stochastic service system with vacation[M]. Beijing: Peking University Press, 2001.
[10]  马占友,刘洺辛,田乃硕. 空竭服务Geom/G/1休假模型 [J]. 运筹学学报, 2004, 8(3): 71-77. MA Zhanyou, LIU Mingxin, TIAN Naishuo. Geom/G/1 vacation queue with exhaustive service[J]. Operations Research Transactions, 2004, 8(3):71-77.
[11]  张丽媛,马占友. 基于仿真实验的休假Geom/G/1排队的性能分析[J]. 数学的实践与认识, 2010, 40(6):151-154. ZHANG Liyuan, MA Zhanyou. Performance analysis of Geom/G/1 with vacation based on simulation experiment[J]. Mathematics in Practice and Theory, 2010, 40(6):151-154.
[12]  张雷, 王玉, 吕胜利,等. 带有负顾客的<em>M/M/m/k-m</em>优先权排队系统分析 [J]. 山东大学学报:理学版, 2011, 46(11): 105-111. ZHANG Lei, WANG Yu, L Shengli. et al. Analysis of the <em>M/M/m/k-m</em> preemptive priority queuing system with negative customers [J]. Journal of Shandong University: Natural Science, 2011, 46(11):105-111.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133