|
- 2015
图的k-支配集与Grbner基求解
|
Abstract:
摘要: 对于具有n个顶点的简单连通图G,首先证明了求解G的所有支配集等价于求解一个多元多项式方程组的所有0-1解; 其次,对于任一正整数k
[1] | ADAMS W, LOUSTAUNAUS P. An introduction to Grbner bases[M]. Washington, D C: American Mathematical Society, 1994:118-276. |
[2] | Sk Md Abu Nayeem, PAL Madhumangal. Genetic algorithmic approach to find the maximum weight independent set of a graph[J]. Journal of Applied Mathematics and Computing, 2007, 25(1):217-219. |
[3] | 熊雪玮.几个图论问题的多项式建模与Grbner 基求解[M]. 海口:海南大学出版社,2012. XIONG Xuewei. The polynomial modeling and Grbner basis solving of several problems in graph theory[M]. Haikou: Hainan University Press, 2012. |
[4] | BONDY J A, MURTY U S R. Graph theory [M]. Berlin: Springer, 2008: 78-156. |
[5] | 熊雪玮,赵志琴. 图的k-独立集与Grbner 基求解[J].工程数学学报,2012, 29(5):696-702. XIONG Xuewei, ZHAO Zhiqing. Solving the k-independent sets of graph by Grbner basis[J]. Chinese Journal Engineering Mathematics, 2012, 29(5):696-702. |
[6] | MNUK M. Representing graph properties by polynomial ideals[M]. New York: Computer Algebra in Scientific Computing, 2001:431-444. |
[7] | MARGULIES S, HICKS I V. An algebraic exploration of dominating sets and Vizing's conjecture[J]. The Electronic Journal of Combinatorics, 2012, 19(2):1-30. |
[8] | 殷剑宏,吴开亚. 图论及其算法[M]. 合肥:中国科学技术大学出版社,2003:179-185. YIN Jianhong,WU Kaiya. Graph theory and algorithms[M]. Hefei:University of Science and Technology of China Press, 2003:179-185. |