|
- 2015
广义矩阵代数上的非线性Lie中心化子
|
Abstract:
摘要: 令G是广义矩阵代数。若Ф:G→G是非线性Lie中心化子, 在一些微弱的假设下, 得Ф=φ+τ, 其中φ:G→G是可加的中心化子, τ:G→Z(G)对所有x,y∈G, 满足τ[x,y]=0。 作为应用, 获得了因子von Neumann代数、三角代数上非线性Lie中心化子的刻画。
Abstract: Let G be a generalized matrix algebra. Assume that Ф:G→Gis a nonlinear Lie centralizer. It is shown that, under some mild conditions, Ф can be expressed as Ф=φ+τ, where φ:G→Gis an additive centralizer and τ:G→Z(G) is a mapping that vanishes at commutators. Based on the above results, the characterizations of nonlinear Lie centralizers on factor von Neumann algebras, triangular algebras are obtained
[1] | CHEUNG W S. Commuting maps of triangular algebras[J]. Journal of the London Mathmatical Society, 2001, 63(1): 117-127. |
[2] | 齐霄霏. 环与算子代数上中心化子的刻画[J]. 数学学报:中文版, 2013, 56(4):459-468. QI Xiaofei. Characterization of centrizers on ring and operator algebras[J]. Acta Mathematica Sinica: Chinese Series, 2013, 56(4):459-468. |
[3] | BRE?AR M. Centralizing mappings and derivations in prime rings[J]. Journal of Algebra, 1993, 156(2): 385-394. |
[4] | QI Xiaofei, DU Shuanping, HOU Jinchuan. Characterization of centrizers[J]. Acta Mathematica Sinica, Chinese Series, 2008, 51(3): 509-516. |
[5] | VUKMAN J, KOSI-ULBL I. Centralisers on rings and algebras[J]. Bulletin of the Australian Mathenatical Society, 2005, 71(2): 225-234. |
[6] | XIAO Zhankui, WEI Feng. Commuting mappings of generalized matrix algebras[J]. Linear Algebra and its Applications, 2010, 433(11):2178-2197. |
[7] | SANDS A D. Radicals and Morita contexts[J]. Journal of Algebra, 1973, 24(2): 335-345. |