全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

广义矩阵代数上的非线性Lie中心化子
Nonlinear Lie centralizers of generalized matrix algebras

DOI: 10.6040/j.issn.1671-9352.0.2014.501

Keywords: Lie中心化子,广义矩阵代数,非线性,
generalized matrix algebra
,nonlinear,Lie centralizer

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 令G是广义矩阵代数。若Ф:G→G是非线性Lie中心化子, 在一些微弱的假设下, 得Ф=φ+τ, 其中φ:G→G是可加的中心化子, τ:G→Z(G)对所有x,y∈G, 满足τ[x,y]=0。 作为应用, 获得了因子von Neumann代数、三角代数上非线性Lie中心化子的刻画。
Abstract: Let G be a generalized matrix algebra. Assume that Ф:G→Gis a nonlinear Lie centralizer. It is shown that, under some mild conditions, Ф can be expressed as Ф=φ+τ, where φ:G→Gis an additive centralizer and τ:G→Z(G) is a mapping that vanishes at commutators. Based on the above results, the characterizations of nonlinear Lie centralizers on factor von Neumann algebras, triangular algebras are obtained

References

[1]  CHEUNG W S. Commuting maps of triangular algebras[J]. Journal of the London Mathmatical Society, 2001, 63(1): 117-127.
[2]  齐霄霏. 环与算子代数上中心化子的刻画[J]. 数学学报:中文版, 2013, 56(4):459-468. QI Xiaofei. Characterization of centrizers on ring and operator algebras[J]. Acta Mathematica Sinica: Chinese Series, 2013, 56(4):459-468.
[3]  BRE?AR M. Centralizing mappings and derivations in prime rings[J]. Journal of Algebra, 1993, 156(2): 385-394.
[4]  QI Xiaofei, DU Shuanping, HOU Jinchuan. Characterization of centrizers[J]. Acta Mathematica Sinica, Chinese Series, 2008, 51(3): 509-516.
[5]  VUKMAN J, KOSI-ULBL I. Centralisers on rings and algebras[J]. Bulletin of the Australian Mathenatical Society, 2005, 71(2): 225-234.
[6]  XIAO Zhankui, WEI Feng. Commuting mappings of generalized matrix algebras[J]. Linear Algebra and its Applications, 2010, 433(11):2178-2197.
[7]  SANDS A D. Radicals and Morita contexts[J]. Journal of Algebra, 1973, 24(2): 335-345.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133