|
- 2018
具有可乘逆断面的正则半群的λ-半直积
|
Abstract:
摘要: 引入了具有可乘逆断面的正则半群上的λ-半直积的概念, 证明了两个具有可乘逆断面的正则半群的λ-半直积仍为具有可乘逆断面的正则半群,推广了逆半群的相关结论。
Abstract: λ-Semidirect products of regular semigroups with a multiplicative inverse transversal are introduced. It is proved that the λ-semidirect of two regular semigroups with a multiplicative inverse transversal is always a regular semigroup with a multiplicative inverse transversal, which generalizes the related results of inverse semigroups
[1] | TANG Xilin. Regular semigroups with inverse transversals[J]. Semigroup Forum,1997, 55:24-32. |
[2] | TANG Xilin. Identities for a class of regular unary semigroups[J]. Communications in Algebra, 2008, 36:2487-2502. |
[3] | BILLHARDT B. On a wreath product embedding and idempotent pure congruences on inverse semigroups[J]. Semigroup Forum, 1992, 45:45-54. |
[4] | BLYTH T S, MCFADDEN R B. Regular semigroups with a multiplicative inverse transversal[J]. Proc Roy Soc Edinburgh, 1982, 92A:253-270. |
[5] | TANG Xilin, GU Ze. Words on free bands with inverse transversals[J]. Semigroup Forum, 2015, 91:101-116. |
[6] | 王守峰.具有可乘逆断面的正则半群上的预同态和限制积[J].山东大学学报(理学版), 2017, 52(8):90-93, 99. WANG Shoufeng. Prehomomorphisms and restricted products of regular semigroups with a multiplicative inverse transversal[J]. Journal of Shandong University(Natural Science), 2017, 52(8):90-93, 99. |
[7] | BLYTH T S. Inverse transversals—a guided tour[C] // Semigroups: Proceedings of the international conference(Braga, 1999). River Edge, NJ: World Sci Publ, 2000: 26-43. |
[8] | LAWSON M V. Inverse semigroups, the theory of partial symmetries[M]. London: World Sci Publ, 1998: 75-82. |
[9] | PETRICH M, REILLY N R. Completely regular semigroups[M]. New York: John Wiley and & Sons Inc, 1999: 48-56. |