|
- 2015
带有保护区域的加法Allee效应捕食-食饵模型的共存解
|
Abstract:
摘要: 讨论了一类带有保护区域和加法Allee效应的扩散捕食-食饵模型。首先讨论了平凡解和半平凡解的稳定性, 接着考察了非常数正解的不存在性, 最后运用全局分歧理论得到了非常数正解的存在性条件。研究结果表明,在弱Allee效应下,当扩散系数适当且参数满足一定条件时,两物种能共存而且共存解稳定;当扩散系数充分大时两物种不共存。
Abstract: A diffusive predator-prey model with additive Allee effect and a protection zone is discussed. Firstly, the stability of trivial and semi-trivial solutions is investigated. Secondly, the non-existence of non-constant positive solutions is determined. Finally, the existence of non-constant positive solutions is obtained by using the global bifurcation theory. Under weakly Allee effect, the results indicate that the two species will coexist and the coexistence solutions are stable when the diffusion coefficient is suitably chosen and the parameters satisfy certain conditions. Furthermore, the two species cannot coexist when the diffusion coefficients are sufficiently large
[1] | WANG J F, SHI J P, WEI J. Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey[J]. J Differential Equations, 2011,251(4):1276-1304. |
[2] | AGUIRRE P, FLORES D, GONZáLEZ-OLIVARES E. Bifurcations and global dynamics in a predator-prey model with a strong Allee effect on the prey, and a ratio-dependent functional response[J]. Nonlinear Analysis:Real World Applications, 2014, 16(1):235-249. |
[3] | PALLAV P, PRASHANTA M. Bifurcation analysis of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and strong Allee effect[J]. Mathematics and Computers in Simulation, 2014, 97:123-146. |
[4] | DU Y H, SHI J P. A diffusive predator-prey model with a protection zone[J]. J Differential Equations, 2006, 229(1):63-91. |
[5] | LI H X. Asymptotic behavior and multiplicity for a diffusive Leslie-Gower predator-prey system with Crowley-Martin functional response[J]. Computers and Mathematics with Applications, 2014, 68(7):693-705. |
[6] | CRANDALL M G, RABINOWITZ P H. Bifurcation from simple eigenvalue[J]. J Funct Anal, 1971, 8(2):321-340. |
[7] | WU J H. Global bifurcation of coexistence state for the competition model in the chemostat[J]. Nonlinear Analysis, 2000, 39(7):817-835. |
[8] | 臧辉,聂华. 一类具有强Alllee效应的捕食-食饵模型正平衡态解的存在性[J]. 陕西师范大学学报:自然科学版, 2013, 41(5):5-10. ZANG H, NIE H. The existence of positive steady-state solutions of a class predator-prey models with strong Allee effect[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2013, 41(5):5-10. |
[9] | CAI Y L, LIU W B, WANG Y B, et al. Complex dynamics of a diffusive epidemic model with strong Allee effect[J]. Nonlinear Analysis:Real World Applications, 2013, 14(4):1907-1920. |
[10] | RABINOWITZ P H. Some global results for nonlinear eigenvalue problems[J]. Journal of Functional Analysis, 1971, 7(3):487-513. |
[11] | WANG W M, ZHU Y N, CAI Y L. Dynamical complexity induced by Allee effect in a predator-prey model[J]. Nonlinear Analysis:Real World Applications, 2014, 16:103-119. |
[12] | DU Y H, PENG R, WANG M X. Effect of a protection zone in the diffusive Leslie predator-prey model[J]. J Differential Equations, 2009, 246(10):3932-3956. |
[13] | ZHOU J, SHI J P.The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses[J].J Math Anal Appl, 2013, 405(2):618-630. |
[14] | DU Y H, LIANG X. A diffusive competition model with a protection zone[J]. J Differential Equations, 2008, 224(1):61-86. |
[15] | CHEN B, WANG M X. Qualitative analysis for a diffusive predator-prey model[J]. Comput Math Appl, 2008, 55(3):339-355. |
[16] | YANG L, ZHONG S. Dynamics of a diffusive predator—prey model with modified Leslie—Gower schemes and additive Allee effect[J]. Computational and Applied Mathematics, 2014, DOI:10.1007/s40314-014-0131-1 |
[17] | WANG M X. Nonlinear Elliptic Equations[M]. Beijing:Science Press, 2010. |