全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

E-quantale范畴
The category of E-quantales

DOI: 10.6040/j.issn.1671-9352.0.2014.559

Keywords: 范畴,自然变换,函子,Quantale,E-quantale同态,
Quantale
,category,functor,E-quantale morphisms,natural transformation

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 引入了E-quantale的定义及其一些相关概念, 讨论了E-quantale的一些重要性质。 证明了Quantale的幂集和E-quantale的乘积均可构成E-quantale, 给出了Quantale的一种自然扩张,由E-quantale可以扩张成一个Quantale。 在Quantale子范畴和E-quantale范畴之间定义了一个嵌入函子K, 并在函子K与遗忘函子U之间构造了一个自然变换, 证明了在一定条件下一个E-quantale和某个单位Quantale的幂集同构。
Abstract: The definition of an E-quantale is introduced, and some properies of E-quantale is obtained. It is proved that the power set of Quantale and the product of E-quantales are E-quantales. Finally, an embedding functor K from the subcategory of Quantales to the category of E-quantale is introducted, and a natural transformation from functor K and forgotten functor U is constructed. Moreover, under some conditions an E-quantale is isomorphic to the power set of a unital Quantale

References

[1]  BERNI-CANANI U, BORCEUX F, SUCCI-CRUCIANI R. A theory of quantale sets[J]. Journal of Pure and Applied Algebra, 1989, 62:123-136.
[2]  VERMEULEN J J C. Proper maps of locales[J]. Journal of Pure and Applied Algebra, 1994, 92:79-107.
[3]  MIRAGLIA F, SOLITRO U. Sheaves over right sided idempotent quantales[J]. Logic J IGPL, 1998, 6(4):545-600.
[4]  CONIGLIO M E, MIRAGLIA F. Modules in the category of sheaves over quantales[J]. Annals of Pure and Applied Logic, 2001, 108:103-136.
[5]  RESENDE P. Sup-lattice 2-forms and quantales[J]. Journal of Algebra, 2004, 276:143-167.
[6]  LEDDA A, KONIG M, PAOLI F. MV algebras and quantum computation[J]. Studia Logica, 2006, 82(2):245-270.
[7]  TAO Yuantao, LAI Hongliang, ZHANG Dexue. Quantale-valued preorders: Globalization and cocompleteness[J]. Fuzzy Sets and Systems, 2014, 256: 236-251.
[8]  PICADO J. On extended frames[J]. Commentationes Mathematicae Universitatis Carolinae, 1995, 36(3):537-549.
[9]  HERRILICH H, STRECKER E. Category theory[M]. Berlin: Heldermann Verlag, 1979.
[10]  MULVEY C J. Second topology conference (Taormina,1984)[J]. Rend Circ Mat Palermo(2): Suppl, 1986, 12:99-104.
[11]  PASEKA J. Projective quantales: a general view[J]. International Journal of Theoretical Physics, 2008, 47(1):291-296.
[12]  REMIGIJUS P G. Extensions of states on MV-quantales[J]. Fuzzy Sets and Systems, 2012, 194:31-51.
[13]  RESENDE P. Functoriality of groupoid quantales[J]. Journal of Pure and Applied Algebra, 2015, 219(8):3089-3109.
[14]  PULTR A. Notes on an extension of the structure of frame[J]. Discrete Mathematics, 1992, 108(2):107-114.
[15]  刘智斌,赵彬. Quantale范畴的代数性[J].数学学报, 2006, 49(6):1253-1258. LIU Zhibin, ZHAO Bin. Algebraic properties of category of quantale[J]. Acta Mathematica Sinica, 2006, 49(6):1253-1258.
[16]  赵斌,梁少辉. 双Quantaler模范畴[J]. 数学学报, 2009, 52(4):821-832. ZHAO Bin, LIANG Shaohui. The category of doubel Quantale modules[J]. Acta Mathematica Sinica, 2009, 52(4) : 821-832.
[17]  梁少辉. <em>L</em>-fuzzy quantale的若干性质[J]. 山东大学学报:理学版,2012,47(4):104-109. LIANG Shaohui. Resarches on some properties of <em>L</em>-fuzzy quantale[J]. Journal of Shandong University: Natural Science, 2012, 47(4):104-109.
[18]  MULVEY C J, PELLETIER J W. On the quantisation of point[J]. Journal of Pure and Applied Algebra, 2001, 159:231-295.
[19]  NIEFIELD S, ROSENTHAL K I. Strong de Morgan's law and the spectrum of a commutative ring[J]. Journal of Algebra, 1985, 93:169-181.
[20]  GIRARD J Y. Linear logic[J]. Theoretical Computer Science, 1987, 50:1-102.
[21]  ROSENTHAL K I. Quantales and their applications[M]. London: Longman Scientific and Technical, 1990.
[22]  KRUML D. Spatial quantales[J]. Applied Categorial Structures, 2002, 10: 49-62.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133