|
- 2017
相对于理想的环的刻画
|
Abstract:
摘要: 设I是环R的理想, 引入伪半投射I-盖的概念。 证明了每一个左R-模有伪半投射I-盖当且仅当每一个左R-模有投射I-盖, 并证明了伪半投射模构成的类是投射类, 进而推广了一些已有的结论。
Abstract: Let I be an ideal of a ring R. The concept of pseudo semiprojective I-covers is introduced. It is shown that every left R-module has a pseudo semiprojective I-cover if and only if every left R-module has a proj-ective I-cover. It is also proved that the class of all pseudo semiprojective modules is a projectivity class, and then some well known results are generalized
[1] | ANDERSON B F W,FULLER K R. Rings and categories of modules[M]. New York: Springe-Verlag, 1974. |
[2] | ZHOU Yiqiang. Generalizations of perfect, semiperfect, and semiregular rings[J]. Algebra Colloq, 2000, 7(3):305-318. |
[3] | OZCAN A C, ALCAN M. Semiperfect modules with respect to a preradical[J]. Comm in Algebra, 2006, 34(3):841-856. |
[4] | QUYNH T C. On pseudo semi-projective modules[J]. Turkish Journal of Mathematics, 2013, 37(1):27-36. |
[5] | ALKAN M, NICHOLSON W K, OZCAN A C. A generalization of projective covers[J]. Journal of Algebra, 2008, 319:4947-4960. |
[6] | WANG Yongduo. Characterizations of <i>I</i>-semiregular and <i>I</i>-semiperfect rings[J/OL]. arXiv preprint arXiv: 1108.2083, 2011. |
[7] | WANG Yongduo, WU Dejun. A generalization of supplemented modules[J]. Hacettepe J Math and Stat, 2016, 45(1):129-137. |
[8] | KESKIN D,KURATOMI Y. On epi-projective modules[J]. East-West J Math, 2008, 10(1):27-35. |
[9] | TUGANBAEV A. Rings close to regular[M]. Dordrecht: Kluwer Academic Publishers, 2002. |
[10] | FACCHINI A, SMERTNIG D, TUNG N K. Cyclically presented modules, projective covers and factorizations[M] // DV Huynh, SK Jain, SR Lpez-Permouth, et al. Proceedings volume in honor of TY Lam, Contemporary Math: Ring Theory and Its Applications. Providence, Rhode Island: American Mathematical Society, 2014, 609: 89-106. |
[11] | WANG Dingguo. Rings characterized by projectivity classes[J]. Comm in Algebra, 1997, 25(1):105-116. |
[12] | KALEBOGAZ B, KESKIN D. A study on semi-projective covers, semi-projective modules and formal triangular matrix rings[J]. Palestine J Math, 2014, 3(1):374-382. |
[13] | NICHOLSON W K,YOUSIF M F. Quasi-frobenius rings[M]. Cambridge: Cambridge University Press, 2003. |