全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

相对于理想的环的刻画
Characterizations of rings relative to an ideal

DOI: 10.6040/j.issn.1671-9352.0.2016.432

Keywords: 半完备环,半正则环,伪半投射摸,投射类,
semiregular ring
,pseudo semiprojective module,semiperfect ring,projectivity class

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 设I是环R的理想, 引入伪半投射I-盖的概念。 证明了每一个左R-模有伪半投射I-盖当且仅当每一个左R-模有投射I-盖, 并证明了伪半投射模构成的类是投射类, 进而推广了一些已有的结论。
Abstract: Let I be an ideal of a ring R. The concept of pseudo semiprojective I-covers is introduced. It is shown that every left R-module has a pseudo semiprojective I-cover if and only if every left R-module has a proj-ective I-cover. It is also proved that the class of all pseudo semiprojective modules is a projectivity class, and then some well known results are generalized

References

[1]  ANDERSON B F W,FULLER K R. Rings and categories of modules[M]. New York: Springe-Verlag, 1974.
[2]  ZHOU Yiqiang. Generalizations of perfect, semiperfect, and semiregular rings[J]. Algebra Colloq, 2000, 7(3):305-318.
[3]  OZCAN A C, ALCAN M. Semiperfect modules with respect to a preradical[J]. Comm in Algebra, 2006, 34(3):841-856.
[4]  QUYNH T C. On pseudo semi-projective modules[J]. Turkish Journal of Mathematics, 2013, 37(1):27-36.
[5]  ALKAN M, NICHOLSON W K, OZCAN A C. A generalization of projective covers[J]. Journal of Algebra, 2008, 319:4947-4960.
[6]  WANG Yongduo. Characterizations of <i>I</i>-semiregular and <i>I</i>-semiperfect rings[J/OL]. arXiv preprint arXiv: 1108.2083, 2011.
[7]  WANG Yongduo, WU Dejun. A generalization of supplemented modules[J]. Hacettepe J Math and Stat, 2016, 45(1):129-137.
[8]  KESKIN D,KURATOMI Y. On epi-projective modules[J]. East-West J Math, 2008, 10(1):27-35.
[9]  TUGANBAEV A. Rings close to regular[M]. Dordrecht: Kluwer Academic Publishers, 2002.
[10]  FACCHINI A, SMERTNIG D, TUNG N K. Cyclically presented modules, projective covers and factorizations[M] // DV Huynh, SK Jain, SR Lpez-Permouth, et al. Proceedings volume in honor of TY Lam, Contemporary Math: Ring Theory and Its Applications. Providence, Rhode Island: American Mathematical Society, 2014, 609: 89-106.
[11]  WANG Dingguo. Rings characterized by projectivity classes[J]. Comm in Algebra, 1997, 25(1):105-116.
[12]  KALEBOGAZ B, KESKIN D. A study on semi-projective covers, semi-projective modules and formal triangular matrix rings[J]. Palestine J Math, 2014, 3(1):374-382.
[13]  NICHOLSON W K,YOUSIF M F. Quasi-frobenius rings[M]. Cambridge: Cambridge University Press, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133