|
- 2017
Yetter-Drinfeld模范畴上 AMHH的弱基本定理
|
Abstract:
摘要: 引入了模范畴中弱Hopf代数和弱余模代数的概念,得到了Yetter-Drinfeld模范畴中AMHH 的弱基本定理。
Abstract: The definitions of weak Hopf algebra and weak comodule algebras in Yetter-Drinfeld module categories are introduced, and the fundamental theorem forAMHH in Yetter-Drinfeld module categories is obtained
[1] | CAENEPEEL S, WANG D G, YIN Y M. Yetter-Drinfeld modules over weak Hopf algebras[J]. Ann Univ Ferrara, 2005, 51(1):69-98. |
[2] | B?HM G, NILL F, SZLACHáNYI K. Weak Hopf algebras: Ⅰ. integral theory and <i>C</i><sup>*</sup>-structure[J]. J Algebra,1999, 221(2):385-438. |
[3] | ZHANG L Y. ZHU S L. Fundamental theorems of weak Doi—Hopf modules and semisimple weak smash product Hopf algebras[J]. Comm Algebra, 2004, 32(9):3403-3415. |
[4] | MONTGOMERY S. Hopf algebras and their actions on rings[M]. Providence, Rhode Island: Amer Math Soc, 1993. |
[5] | HAYASHI T. Quantum group symmetry of partition functions of IRF models and its applications to Joness index theory[J]. Comm Math Phys, 1993, 157:331-345. |
[6] | DOI Y. Hopf modules in Yetter-Drinfeld category[J]. Comm Algebra, 1998, 26(9): 3057-3070. |
[7] | NIKSHYCH D, Vainerman L. Finite quantum groupoids and their applications[J]. Math Sci Res Inst Publ, 2002, 43:211-262. |
[8] | NIKSHYCH D. A duality theorem for quantum groupoids[J]. Contemp Math, 2000, 267:237-243. |
[9] | YAMANOUCHI T. Duality for generalized Kac algebras and a characteriztion of finite groupoid algebras[J]. J Algebra, 1994, 163:9-50. |