|
- 2018
关于格蕴涵代数的(∈,∈∨q(λ, μ))-模糊LI-理想
|
Abstract:
摘要: 首先, 对格蕴涵代数的(∈,∈∨q(λ, μ))-模糊LI-理想概念作进一步深入研究, 获得了(∈,∈∨q(λ, μ))-模糊LI-理想的一些新的性质和刻画。 其次, 在由给定的格蕴涵代数L上全体模糊集构成的集合上定义了一个偏序关系, 利用给出了由L上的一个模糊集生成的(∈,∈∨q(λ, μ))-模糊LI-理想的定义并建立了其表示定理。 最后, 证明了L关于给定偶对(λ, μ)的全体(∈,∈∨q(λ, μ))-模糊LI-理想之集在偏序下构成一个完备的分配格。
Abstract: Firstly, the notion of (∈,∈∨q(λ, μ))-fuzzy LI-ideals in lattice implication algebras is further studied, and some new properties and equivalent characterizations of (∈,∈∨q(λ, μ))-fuzzy LI-ideals are given. Secondly, a partial order is defined on the set of all fuzzy sets in a given lattice implication algebra L, the definition of (∈,∈∨q(λ, μ))-fuzzy LI-ideal which is generated by a fuzzy set is given and its representation theorem is established by using. Finally, It is proved that the set consisting of all (∈,∈∨q(λ, μ))-fuzzy LI-ideals with respect to a fixed pair(λ, μ)in a given lattice implication algebra, under the partial order, forms a complete distributive lattice
[1] | GOGUEN J A. The logic of inexact concepts[J]. Synthese, 1969, 19:325-373. |
[2] | BOLC L, BOROWIK P. Many-valued Logics[M]. Berlin: Springer, 1992. |
[3] | JUN Y B, ROH E H, XU Yang. LI-ideals in lattice implication algebras[J]. Bull Korean Math Soc, 1998, 35:13-24. |
[4] | 刘春辉, 徐罗山. 格蕴涵代数的(∈,∈∨<i>q<sup>[k] </sup>)</i>-fuzzy LI-理想[J]. 纯粹数学与应用数学, 2011, 27(3):363-376. LIU Chunhui, XU Luoshan.(∈,∈∨<i>q<sup>[k] </sup></i>)-fuzzy LI-ideals in lattice implication algebras[J]. Pure and Applied Mathematics, 2011, 27(3):363-376. |
[5] | BORNS D W, MACK J M. An algebraic introduction on mathematical logic[M]. Berlin: Springer, 1975. |
[6] | PAVELKA J. On fuzzy logic I, II, III[J]. Zeitschr Math Logik Grundlag Math, 1979, 25(1):45-52; 119-134; 447-464. |
[7] | 徐扬. 格蕴涵代数[J]. 西南交通大学学报, 1993, 28(1):20-27. XU Yang. Lattice implication algebras[J]. Journal of Southwest Jiaotong University, 1993, 28(1):20-27. |
[8] | 刘春辉. 格蕴涵代数的LI-理想格及其素元刻画[J]. 高校应用数学学报(A辑), 2014, 29(4):475-482. LIU Chunhui. LI-ideals lattice and its prime elements characterizations in a lattice implication algebra[J]. Applied Mathematics A Journal of Chinese Universities(Series A), 2014, 29(4):475-482. |
[9] | 刘春辉. 格蕴涵代数的扩展LI-理想[J]. 高校应用数学学报(A辑), 2015, 30(3):306-320. LIU Chunhui. Extended LI-ideals in lattice implication algebras[J]. Applied Mathematics A Journal of Chinese Universities(Series A), 2015, 30(3):306-320. |
[10] | PENG Jiayin.(∈,∈∨<i>q</i>)-fuzzy LI-ideals in lattice implication algebras[J]. Lecture Notes in Electrical Engineering, 2012, 135:221-226. |
[11] | NOVAK V. First-order fuzzy logic[J]. Studia Logic, 1982, 46(1):87-109. |
[12] | LIU Yonglin, LIU Ssanyang, XU Yang, et al. ILI-ideals and prime LI-ideals in lattice implication algebras[J]. Information Sciences, 2003, 155:157-175. |
[13] | JUN Y B, XU Yang. Fuzzy LI-ideals and in lattice implication algebras[J]. J Fuzzy Math, 1999, 7(4):997-1003. |
[14] | XU Yang, RUAN D, QIN Keyun, et al. Lattice-valued logic[M]. Berlin: Springer, 2004. |
[15] | 傅小波, 廖祖华, 郑高平, 等. 格蕴涵代数的(∈,∈∨<i>q<sub>(λ, μ)</sub>)</i>-模糊LI-理想[J]. 模糊系统与数学, 2014, 28(5):41-50. FU Xiaobo, LIAO Zuhua, ZHENG Gaoping, et al.(∈,∈∨<i>q<sub>(λ, μ</sub></i>))-fuzzy LI-ideals in lattice implication algebras[J]. Fuzzy Systems and Mathematics, 2014, 28(5):41-50. |