全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

MTL代数的Wajsberg形式及其应用
Wajsberg's form of MTL algebras with applications

DOI: 10.6040/j.issn.1671-9352.0.2014.342

Keywords: NMTL代数,MTL代数,BL代数,剩余格,BR0代数,模糊逻辑,
fuzzy logic
,residuated lattice,NMTL algebra,BR0 algebra,BL algebra,MTL algebra

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: MTL代数是一种重要的基础逻辑代数.本文采用Wajsberg方法,根据逻辑系统MTL中公理的形式,建立了NMTL代数的经典代数表示形式,进而证明了NMTL代数与MTL代数是同一代数结构,证明了满足条件 ?x,y∈L, x→y=(y→0)→(x→0)的NMTL代数L是BR0代数.在此基础上证明了IMTL代数和BR0代数是同一代数结构,并给出BR0代数和BL代数的Wajsberg形式.
Abstract: MTL algebra is an important basic logic algebra. Firstly, the classical algebras forms of NMTL algebra is given by taking Wajsberg's method and some parts of axioms of MTL logic system, and it is proved that NMTL algebra and MTL algebra have identical structure. Secondly, it is proved that an NMTL algebras L satisfying the condition: ?x,y∈L, x→y=(y→0)→(x→0) is BR0 algebra. Finally, it is proved that IMTL algebra and BR0 algebra have identical structure and the Wajsberg forms of BR0 algebra and BL algebra are given

References

[1]  HAJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 1998.
[2]  刘春辉, 徐罗山. 格蕴涵代数的蕴涵表示定理[J]. 模糊系统与数学, 2010,24(4):26-32. LIU Chunhui, XU Luoshan. The representative theorems of lattice implication algebras by implication operator[J]. Fuzzy Systems and Mathematics, 2010, 24(4):26-32.
[3]  吴洪博. 基础R<sub>0</sub>代数与基础<em>L</em><sup>*</sup>系统[J]. 数学进展, 2003, 32(5):565-576. WU Hongbo. Baisis R<sub>0</sub>-algebra and basis <em>L</em><sup>*</sup> system[J]. Advances in Mathematics, 2003, 32(5):565-576.
[4]  王国俊. 非经典数理逻辑与近似推理[M]. 2版.北京:科学出版社,2006. WANG Guojun. Non-classical mathematical logic and approximate reasoning[M]. 2nd.Beijing: Science Press, 2006.
[5]  ESTEVA F, GODO L. Monoidal t-norm based logic: towards a logic for left-continuous t-norms[J]. Fuzzy Sets and Systems, 2001, 124(3):271-288.
[6]  JUN Y B, XU, MA Y J. Fuzzy filters of MTL-algerbra[J]. Information Sciences, 2005, 175:120-138.
[7]  Chang C C. Algebriac analysis of many-valued logics[J]. Trans Amer Math Soc, 1958, 88:467-490.
[8]  高李红, 吴洪博. QBL-代数及其与BL-代数的等价性[J].吉林大学学报:理学版,2011,49(1):41-46. GAO Lihong, WU Hongbo. Quasi-BL-algebras and their equivalence with BL-algebras[J]. Journal of Jili University: Science Edition, 2011, 49(1):41-46.
[9]  王国俊.数理逻辑引论与归结原理[M].2版.北京:科学出版社,2006. WANG Guojun. An introduction to mathematical logic and resolution principle[M]. 2nd.Beijing: Science Press, 2006.
[10]  刘练珍, 李开泰. FI代数同构于一族全序FI代数的直积的子代数的条件[J]. 纯粹数学与应用数学, 2004,20(1):63-67. LIU Lianzhen, LI Kaitai. The conditions of FI algebra to be a subalgebra of direct of a system of linearly ordered FI algebras[J]. Pure and Applied Mathematics, 2004, 20(1):63-67.
[11]  张小红. 模糊逻辑及其代数分析[M]. 北京: 科学出版社,2008. ZHANG Xiaohong. Fuzzy logic and algebraic analysis[M]. Beijing: Science Press, 2008.
[12]  吴望名. Fuzzy 蕴涵代数[J]. 模糊系统与数学, 1990,4(1):56-64. WU Wangming. Fuzzy implication algebras[J]. Fuzzy Systems and Mathematics, 1990, 4(1):56-64.
[13]  FONT J, RODRIGUEZ A J, TORRENS A. Wajsberg algebras[J]. Stochastica, 1984, 8:5-31.
[14]  裴道武. MTL-代数的特征定理[J]. 数学学报:中文版,2007,50(6):1201-1206. PEI Daowu. The characterizations of MTL-algebras[J]. Acta Mathematics Sinica: Chinese Series, 2007, 50(6):1201-1206.
[15]  张小红,魏萍.DR<sub>0</sub>代数:由De Morgan 代数导出的正则剩余格[J].数学进展,2008,37(4):499-511. ZHANG Xiaohong, WEI Ping. DR<sub>0</sub> algebras: a kind of regular residuated lattice via De Morgan algebras[J]. Advances in Mathematics, 2008, 37(4):499-511.
[16]  PAVELKA J. On fuzzy logic Ⅰ: Many-valued rules of inference, Ⅱ: Enriched residuated lattice and semantics of propositionalcalculi, III: Semantical completeness of some many-valued propositional calculi[J]. Zeitschrf Math Logik und Grundlagender Math, 1979, 25:45-52; 119-134; 447-464.
[17]  徐扬. 格蕴涵代数[J]. 西南交通大学学报, 1993, 89(1):20-27. XU Yang. Lattice implication algebras[J]. Journal of Southwest Jiaotong University, 1993, 89(1):20-27.
[18]  XU Yang, RUAN Da, QIN Keyun, et al. Lattice-valued logic[M]. Berlin Heidelberg: Springer-Verlag, 2003.
[19]  刘敏,吴洪博.预线性剩余格与逻辑代数[J].工程数学学报,2008,25(2):199-203. LIU Min, WU Hongbo. Prelinearity residuated-lattice and logic algebras[J]. Chinese Journal of Engineering Mathematics, 2008, 25(2):199-203.
[20]  王娜, 吴洪博. MTL-代数的演绎系统和余零化子及其相互关系[J]. 模糊系统与数学,2014, 28(1):9-14. WANG Na, WU Hongbo. The deductive system and co-annihilator of MTL-algebras and the relation between them[J]. Fuzzy Systems and Mathematics, 2014, 28(1):9-14.
[21]  吴洪博,王昭海. BR<sub>0</sub>-代数的无序表示形式及WBR<sub>0</sub>-代数的性质[J].工程数学学报,2009, 26(3):456-460. WU Hongbo, WANG Zhaohai. The non-ordered Form of BR<sub>0</sub>-algeebras and properties of WBR<sub>0</sub>-algebras[J]. Chinese Journal of Engineering Mathematics, 2009, 26(3):456-460.
[22]  朱翔, 徐罗山. BL代数的等价刻画及更多性质[J]. 模糊系统与数学, 2011,25(1):13-18. ZHU Xiang, XU Luoshan. On characterizations and further properties of BL-algebras[J]. Fuzzy Systems and Mathematics, 2011, 25(1):13-18.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133