全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基于浅层语义分析的主题事件的时间识别
Temporal recognition for topic event based on shallow semantic parsing

DOI: 10.6040/j.issn.1671-9352.3.2014.095

Keywords: 时间识别,事件抽取,浅层语义分析,主题事件,动态,
topic event
,event extraction,shallow semantic parsing,dynamic,temporal recognition

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 时间识别是自然语言处理中极其重要的课题。事件中与主题相关的时间信息体现了事件在时间维度的主题特征。当前面向事件的时间识别大多是基于句子或短语的,并采用静态时间值机制。本文提出了一个面向主题事件的时间识别模型。该模型采用参考时间动态选择机制对时间表达式规范化。结合事件抽取和浅层语义分析,将浅层语义分析结果和时间表达式进行映射,将基于句子或短语的时间识别转化为基于篇章的时间识别,从而识别主题事件片段的时间。实验表明所提出的方法使主题事件片段的时间识别的性能提高了9.6%。
Abstract: Temporal recognition is a key subject in natural language processing community. The topic-related temporal information reflects the topic feature of topic events on temporal dimensionality. Most temporal recognition for events was sentence-oriented or phrase-oriented and employed static time-value machine. A temporal recogtion model for topic events was proposed in this paper. Temporal expressions were normalized with reference time dynamic-choosing mechanism in this model. Combining event extraction and shallow semantic parsing, semantic roles were mapped to temporal expressions. Document-oriented temporal recognition was implemented using sentence-oriented or phrase-oriented temporal recognition, consequently, temporal recognition for topic event segments was realized. Results show that performances of temporal recognition for topic event segments are improved by 9.6%

References

[1]  LI Xiaowen, JIN Peiquan, ZHAO Xujian, et al. NTLM:a time-enhanced language model based ranking approach for web search[C]//Proceedings of Workshops on Web Information Systems Engineering. Berlin:Springer-Verlag, 2010:156-170.
[2]  BETHARD S, LU Z Y, MARTIN J H, et al. Semantic role labeling for protein transport predicates[J]. BMC Bioinformatics, 2008, 9:277.
[3]  赵华. 话题检测与跟踪关键技术研究[D]. 哈尔滨:哈尔滨工业大学, 2008. ZHAO Hua. Research on topic detection and tracking[D].Harbin:Harbin Institute of Technology, 2008.
[4]  LINGUISTIC D C. ACE (Automatic content extraction) Chinese annotation guidelines for events[S].Version 5.5.1. 2005. https://www.ldc.upenn.edu/Projects/ACE/.
[5]  BERBERICH K, BEDATHUR S, ALONSO O, et al. A language modeling approach for temporal information needs[C]//Proceedings of the 32nd European Conference on Information Retrieval. Berlin:Springer-Verlag, 2010:13-25.
[6]  LIN Sheng, JIN Peiquan, ZHAO Xujian, et al. Exploiting temporal information in Web search[J]. Expert Systems with Applications, 2014, 41(2):331-341.
[7]  BILOTTI M W, OGILVIE P, CALLAN J, et al. Structured retrieval for question answering[C]//Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2007:351-358.
[8]  NARAYANAN S, HARBABAGIU S. Question answering based on semantic structures[C]//Proceedings of the 20th international conference on Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2004.
[9]  SURDEANU M, HARABAGIU S, WILLIAMS J, et al. Using predicate-argument structures for information extraction[C]//Proceedings of the 41st Annual Meeting on Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2003:8-15.
[10]  UZZAMAN N, ALLEN J F. Extracting events and temporal expressions from text[C]//Proceedings of IEEE the 4th International Conference on Semantic Computing. Piscataway, NJ:IEEE, 2010.
[11]  RUPPENHOFER J, SPORLEDER C, MORANTE R. SemEval-2010 task 10:Linking events and their participants in discourse[C]//Proceedings of the 5th International Workshop on Semantic Evaluation. Stroudsburg:Association for Computational Linguistics, 2010:45-50.
[12]  DAS D, SCHNEIDER N, CHEN D, et al. Probabilistic frame-semantic parsing[C]//Proceedings of Human Language Technologies:The Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2010:948-956.
[13]  LI Shiqi, LU Qin, ZHAO Tiejun, et al. Combining constituent and dependency syntactic views for Chinese semantic role labeling[C]//Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2010:665-673.
[14]  HE D, STOTT P D. Topic dynamics:an alternative model of 'bursts' in stream of topics[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2010:443-452.
[15]  ZHAO Xujian, JIN Peiquan, YUE Lihua. Automatic temporal expression normalization with reference time dynamic-choosing[C]//Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2010:1498-1506.
[16]  贺瑞芳,秦兵,刘挺,等. 基于依存分析和错误驱动的中文时间表达式识别[J]. 中文信息学报, 2007, 21(5):36-40. HE Ruifang, QIN Bing, LIU Ting, et al. Recognizing the extent of Chinese time expressions based on the dependency parsing and error-driven learning[J]. Journal of Chinese Information Processing, 2007, 21(5):36-40.
[17]  HAJIC J, CMEJREK M, DORR B, et a1. Natural language generation in the context of machine translation[R]. Maryland:USA Center for Language and Speech Processing, 2004.
[18]  赵旭剑,金培权,岳丽华. TTP:一个面向中文新闻网页的主题时间解析器[J],小型微型计算机系统,2013,34(5):1042-1049. ZHAO Xujian, JIN Peiquan, YUE Lihua. TTP:a topic time parser on Chinese news from Internet[J]. Journal of Chinese Computer Systems, 2013, 34(5):1042-1049.
[19]  KANHABUA N, NRVAG K. Determining time of queries for re-ranking search results[C]//Proceedings of the 4th European Conference on Research and Advanced Technology for Digital Libraries. Berlin:Springer-Verlag, 2010:261-272.
[20]  MELLI G, SHI Z G, WANG Y, et al. Description of squash, the sfu question answering summary handler for the Duc-2006 summarization task[C]//Proceedings of the Document Understanding Conference. Gaithersburg:NIST, 2006.
[21]  TRANG D H, PALMER M. The role of semantic roles in disambiguating verb senses[C]//Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2005:42-49.
[22]  ATHENIKOS S J, HAN H. Biomedical question answering:a survey[J]. Computer Methods and Programs in Biomedicine, 2010, 99(1):1-24.
[23]  EXNER P, NUGUES P. Using semantic role labeling to extract events from wikipedia[C]//Proceedings of the Workshop on Detection, Representation, and Exploitation of Events in the Semantic Web. USA:The Pennsylvania State University, 2011:38-47.
[24]  LEVY R, MANNING C D. Is it harder to parse Chinese, or the Chinese treebank?[C]//Proceedings of the 41st Annual Meeting on Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2003:439-446.
[25]  金璐钰. 基于框架的事件抽取关键技术研究[D]. 苏州:苏州大学,2010. JIN Luyu. Research on key technology of event extraction based on frame[D]. Suzhou:Suzhou University, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133