全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

测度框架的若干性质
Some properties of measure frames

DOI: 10.6040/j.issn.1671-9352.0.2017.505

Keywords: 测度框架,算子,提升,伪对偶,
measure frames
,operator,shift,pseudo-dual

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 测度框架是Hilbert空间上经典框架的推广, 但同时也有着本质的区别。 本文主要从框架算子理论的角度来研究测度框架的等式与不等式性,同时讨论了测度框架的提升、近似对偶及伪对偶。
Abstract: Measure frames is a generalization of vector frames in Hilbert spaces, but there are essential differences between them. Some inequalities and equalities are obtained for measure frames from the perspective of frame operator theory. At the same time, we also discuss the shift of a measure frame to a tight measure frame and the approximately dual frames and pseudo-dual frames

References

[1]  GABARDO J P, HAN Deguang. Frames associated with measurable space[J]. Adv Comp Math, 2003, 18(2/3/4):127-147.
[2]  KAFTAL V, ZHANG Shuang. Operator-valued frames[J]. Trans Amer Math Soc, 2009, 361(12):6349-6385.
[3]  GAVRUTA P. On some identities and inequalities for frames in Hilbert spaces[J]. Math Anal Appl, 2006, 321(1):469-478.
[4]  EHLER M. Random tight frames[J]. Fourier Anal Appl, 2012, 18(1):1-20.
[5]  CHRISTENSEN Ole, LAUGESEN R S. Approximately dual frame pairs in Hilbert space and applications to Gabor frames[J]. Sampling Theroy in Signal & Image Processing, 2010, 9(9):77-89.
[6]  SUN Wenchang. G-frames and g-Riesz bases[J]. J Math Anal Appl, 2006, 322(1):439-452.
[7]  CASAZZA Peter, KUTYNIOK Gitta, LI Shidong. Fusion frames and distributed processing[J]. Appl Comput Harmon Anal, 2008, 25(1):114-132.
[8]  CASAZZA Peter, HAN Deguang, LARSON David. Frames for Banach spaces[J]. Contemp Math, 1999, 82(247):149-182.
[9]  FRANK Michael, LARSON David. Frames in Hilbert C*-modules and C*-algebras[J]. Operator Theory, 2002, 48(2):203-233.
[10]  HAN Deguang, LARSON David, LIU Bei. Operator-valued measures, dilations, and the theory of frames[J]. Mem Amer Math Soc, 2014, 229(1075):1-84.
[11]  HAN Deguang, LARSON David. Frames, bases, and group representations[J]. Mem Amer Math Soc, 2000, 147(697):1-94.
[12]  CHRISTENSON Ole. An introduction to frames and Riesz bases[J]. Birkhauser Boston, 2003, 3(5):59-76.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133