|
- 2017
不同加载条件下的腰椎间盘蠕变实验研究
|
Abstract:
摘要: 为研究加载条件对腰椎间盘蠕变性能的影响,以新鲜猪腰椎间盘为研究对象,采用非接触式数字图像相关技术,考虑不同压缩应力及加载速率,对椎间盘进行蠕变实验,并建立蠕变本构模型。结果表明:施加压缩应力时,椎间盘蠕变曲线呈指数规律变化;相同加载速率下,蠕变应变随着应力的增大而增大;应力相同时,加载速率越大,蠕变应变越小;利用三参数粘弹模型建立的椎间盘本构方程与实验结果具有较好的相关性,该能够预测椎间盘的蠕变性能。研究结果为临床进一步研究人体椎间盘粘弹特性提供理论基础。
Abstract: In order to study the effects of loading conditions on the creep properties of lumbar disc, considering different compression stress and loading rate, creep experiments with fresh porcine lumbar intervertebral disc were implemented by an optimized digital image correlation(DIC)technique. The creep constitutive model was established. The results show that creep curves of the intervertebral disc showed exponential rule change under the compression stress; creep strain increased with the increase of stress as the same loading rate; the larger the loading rate, the smaller the creep strain under the same stress. The constitutive equation of intervertebral disc established by using three-parameter viscoelastic model had good correlation with the experimental results. It can predict the creep properties of intervertebral disc. The research results provide a theoretical basis for further study of viscoelastic properties of human intervertebral disc in clinical
[1] | 高巍巍,李殿宁,宋逸先,等.人体新鲜脊柱椎间盘样本拉伸蠕变的实验研究[J]. 中国药导报,2011,17(1):25-29. GAO Weiwei, LI Dianning, SONG Yixian, et al. Human body fresh spinal disc tensile creep sample of experiments[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacy, 2011, 17(1):25-29. |
[2] | 于涛,孙长江,马洪顺.在常股骨头与坏死股骨头松质骨的蠕变特性:45度方向取样比较[J]. 中国组织工程研究与临床康复,2010,14(17):3131-3134. YU Tao, SUN Changjiang, MA Hongshun. Creep characteristics of cancellous bone at 45°between normal and necrotic femoral head[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(17):3131-3134. |
[3] | SPILKER R L, JAKOBS D M, SCHULTZ ALBERT B. Material constants for a finite element model of the intervertebral disk with a fiber composite annulus[J]. Journal of Biomechanical, 1986, 108(1):1-11. |
[4] | YANG Haisheng, NAWATHE Shashank, FIELDS AARON J, et al. Micromechanics of the human vertebral body for forward flexion[J]. Journal of Biomechanics, 2012, 45(12):2142-2148. |
[5] | LIU Qing, WANG Taiyong, YANG Xiupping, et al. Strain distribution in the intervertebral disc under unconfined compression and tension load by the optimized digital image correlation technique[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228(5):486-493. |
[6] | 黄建松,华宏星,王以进,等.人体胸腰椎和椎间盘的应力松弛和蠕变性试验[J]. 透析与人工器官,2012, 21(1):4-8. HUANG Jiansong, HUA Hongxing, WANG Yijin, et al. Experiment on stress relaxation and creep properties of human thoraco-lumbar vertebral body and intervertebral disc[J]. Chinese Journal of Dialysis and Artificial Organs, 2012, 21(1):4-8. |
[7] | HOLLINGSWORTH NATHANIEL T, WAGNER DIANE R. The stress and strain states of the posterior annulus under flexion[J]. Spine, 2012, 37(18):1134-1139. |
[8] | KIM K, LEE S K, KIM Y H. The biomechanical effects of variation in the maximum forces exerted by trunk muscles on the joint forces and moments in the lumbar spine: a finite element analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224(10): 1165-1174. |
[9] | JACOBS NATHAN T, CORTES DANIEL H, PELOQUIN JOHN M, et al. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent[J]. Journal of Biomechanics, 2014, 47(11): 2540-2546. |
[10] | NIKKHOO Mohammad, HSU Yuchun, HAGHPANAHI Mohammad, et al. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2013, 227(6):672-682. |
[11] | ALETI Harsha, MOTALEB Ibrahim Abdel. Study of stress and strain in human spine[J]. IEEE International Conference on Electro Information Technology, 2014, 2014:184-189. |
[12] | RYAN Garrett, PANDIT Abhay, APATSIDIS Dimitrios. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine[J].Clinical Biomechanics, 2008, 23(7):859-869. |
[13] | 王杨,刘大禹,李新颖,等. 三参数模型计算股骨颈松质骨压缩蠕变方程[J]. 中国组织工程研究与临床康复,2011,15(35):6483-6486. WANG Yang, LIU Dayu, LI Xinying, et al. Three-parameter calculation model of the femoral neck cancellous bone compression creep equation[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2011, 15(35):6483-6486. |
[14] | 马洪顺,李振宇,董心,等. 人体椎间盘应力松弛与蠕变实验研究[J]. 试验技术与试验机,1989(4): 52-55. MA Hongshun, LI Zhenyu, DONG Xin, et al. Experimental study of stress relaxation and creep in human intervertebral discs[J]. Test Technology and Testing Machine, 1989(4):52-55. |
[15] | 黄菊英,李海云,吴浩. 腰椎间盘突出症力学特征的仿真计算方法[J]. 医用生物力学,2012, 27(1):96-101. HUANG Juying, LI Haiyun, WU Hao. Simulation calculation on biomechanical properties of lumbar disc herniation[J]. Journal of Medical Biomechanics, 2012, 27(1):96-101. |
[16] | 聂文忠,张希安,王成焘. 矢状面内人体屈伸运动的生物力学研究[J]. 上海交通大学学报,2009, 43(7):1027-1031. NIE Wenzhong, ZHANG Xian, WANG Chengtao. Biomechanics research on flexion and extension during sagittal plane[J]. Journal of Shanghai Jiaotong University, 2009, 43(7):1027-1031. |
[17] | LITTLE JUDITH Paige, PEARCY Mark, TEVELEN G, et al. The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(2):146-157. |