|
- 2017
一种新型脱细胞猪角膜基质载体支架的制备及其鉴定研究
|
Abstract:
摘要: 为了获得基于异种角膜材料的理想组织工程角膜载体支架,首次建立了脱氧胆酸钠(SD)和原钒酸钠(SO)联合处理的技术方法,利用新鲜猪角膜进行了脱细胞角膜基质(aPCS)的制备及其鉴定研究。用角膜板层刀从新鲜猪角膜中切下厚度450 μm的角膜片,分别选用SD联合SO、十二烷基磺酸钠(SDS)和Triton X-100的去细胞处理方法制备出SD-aPCS、SDS-aPCS和Triton-aPCS共3种支架,利用外观照相、分光光度计、石蜡切片苏木紫-伊红(HE)染色、冰冻切片DAPI和阿利新蓝染色检测了其理化性质和组织结构;对SD-aPCS进行扫描和透射电镜鉴定后,进而利用噻唑蓝(MTT)、石蜡切片HE染色、冰冻切片DiI荧光观察以及免疫荧光细胞化学染色评估了其对非转染人角膜基质(ntHCS)细胞的毒性与生物相容性。检测结果发现,3种aPCS的细胞脱除干净且在干重和含水量上没有显著差异;其中,SD-aPCS的透明性与糖胺聚糖(GAG)含量最高、SDS-aPCS次之、Triton-aPCS最低;除Triton-aPCS的组织结构出现了明显的紊乱外,SD-aPCS和SDS-aPCS的组织结构均排列规则。在电镜下,SD-aPCS的前弹力层表面平整、无裂痕,板层结构和胶原纤维超微结构正常;此外,SD-aPCS浸提液对ntHCS细胞没有毒性作用,注射接种到SD-aPCS支架内的ntHCS细胞与支架嵌合紧密,随体外培养时间的延长而逐渐伸展和迁移,且细胞仍保持有其固有标志蛋白—波形蛋白,细胞连接蛋白—间隙连接蛋白-43和整联蛋白,以及膜运输蛋白—钠钾泵的阳性表达。由此可见,利用SD联合SO的方法所制备SD-aPCS具有理想的理化性质、组织结构和生物相容性,可作为一种理想的载体支架用于组织工程角膜的体外构建及其相关应用研究。
Abstract: To obtain a satisfied carrier scaffold from xenogeneic corneal stroma for corneal tissue engineering, a novel technique using detergents of sodium deoxycholate(SD)and sodium orthovanadate(SO)was established to prepare an acellular porcine cornea stromata(aPCS)scaffold from fresh porcine cornea, and characterize its essential property for the first time in this study. The anterior lamella, 450 mm in thickness and sliced off from each cornea of fresh porcine eyeballs using a microkeratome, was decellularized with SD combined with SO, sodium dodecyl sulfate(SDS), and Triton X-100, and three kinds of aPCS scaffolds, ie SD-aPCS, SDS-aPCS and Triton-aPCS, were obtained, respectively. The physichemical property and histological structure of them was evaluated by light microscopy, spectrophotometer, paraffin section with hematoxylin-eosin(HE)staining, and frozen section with DAPI staining, and alcian blue staining, respectively. The ultrastructure of the SD-aPCS scaffold was verified by scanning electronic microscopy(SEM) 山 东 大 学 学 报 (理 学 版)第52卷 - 第5期樊廷俊,等:一种新型脱细胞猪角膜基质载体支架的制备及其鉴定研究 \=-and transmission electron microscopy(TEM), and their cytotoxicity and biocompatibility to non-transfected human corneal stromal(ntHCS)cells was evaluated by methyl thiazolyl tetrazolium(MTT), HE staining, DiI-fluorescence observation, and immunocytofluorescent staining. The results showed that the dry weight and water content of the three kinds of aPCS scaffolds had no significant difference, their innate cells were removed, and all of them were completely decellularized. Among them, the SD-aPCS scaffold had the highest transparency and glycosaminoglycan(GAG)content, followed by the SDS-aPCS and Triton-aPCS scaffold successively. In addition to the obvious disorder of the Triton-aPCS scaffold, the histological
[1] | LYNCH A P, AHEARNE M. Strategies for developing decellularized corneal scaffolds[J]. Exp Eye Res, 2013, 108(3):42-47. |
[2] | FAN Tingjun, HU Xiuzhong, ZHAO Jun, et al. Establishment of an untransfected human corneal stromal cell line and its biocompatibility to acellular porcine corneal stroma[J]. Int J Ophthalmol, 2012, 5(3):286-292. |
[3] | MAUERER R, EBERT S, LANGMANN T. High glucose, unsaturated and saturated fatty acids differentially regulate expression of ATP-binding cassette transporters ABCA1 and ABCG1 in human macrophages[J]. Exp Mol Med, 2009, 41(2):126-132. |
[4] | DAXER A, MISOF K, GRABNER B, et al. Collagen fibrils in the human corneal stroma: structure and aging[J]. Invest Ophthalmol Vis Sci, 1998, 39(3):644-648. |
[5] | DU Liqun, WU Xinyi, PANG Kunpeng, et al. Histological evaluation and biomechanical characterization of an acellular porcine cornea scaffold[J]. Br J Ophthalmol, 2010, 95(3):410-414. |
[6] | CHEN S, BIRK D. The regulatory roles of small leucine-rich proteoglycans in extracellular matrix assembly[J]. FEBS J, 2013, 280(10):2120-2137. |
[7] | BAYYOUD T, THALER S, HOFMANN J, et al. Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells[J]. Curr Eye Res, 2012, 37(3):179-186. |
[8] | WILSON S L, SIDNEY L E, DUNPHY S E, et al. Keeping an eye on decellularized corneas: a review of methods, characterization and applications[J]. J Funct Biomater, 2013, 4(3):114-161. |
[9] | AMANO S, SHIMOMURA N, YOKOO S, et al. Decellularizing corneal stroma using N2 gas[J]. Mol Vis, 2008, 14(104/105):878-882. |
[10] | PONCE MARQUEZ S, MARTYINEZ V S, MCINTOSH AMBROSE W, et al. Decellularization of bovine corneas for tissue engineering applications[J]. Acta Biomater, 2009, 5(6):1839-1847. |
[11] | DIAO Jinmei, PANG Xin, QIU Yue, et al. Construction of a human corneal stromal equivalent with non-transfected human corneal stromal cells and acellular porcine corneal stromata[J]. Exp Eye Res, 2015, 132:16-224. |
[12] | 赵文卓, 樊廷俊, 胡修忠, 等. 组织工程人角膜基质体外重建的研究进展[J]. 山东大学学报(理学版), 2011, 49(8):62-66. ZHAO Wenzhuo, FAN Tingjun, HU Xiuzhong, et al. Research advances on in vitro reconstruction of tissue-engineered human corneal stroma[J]. Journal of Shandong University(Natural Science), 2011, 49(8):62-66. |
[13] | CRAPO P M, GILBERT T W, BADYLAK S F. An overview of tissue and whole organ decellularization processes[J]. Biomaterials, 2011, 32(12):3233-3243. |
[14] | SHAN M, FAN T J. Cytotoxicity of carteolol to human corneal epithelial cells by inducing apoptosis via triggering the Bcl-2 family protein-mediated mitochondrial pro-apoptotic pathway[J]. Toxicol In Vitro, 2016, 35:36-42. |
[15] | XU CC, CHAN RW, TIRUNAGARI N. A biodegradable, acellular xenogeneic scaffold for regeneration of the vocal fold lamina propria[J]. Tissue Eng, 2007, 13(3):551-566. |
[16] | XU Bin, HU Xiuzhong, ZHAO Jun, et al. Establishment of an untransfected human corneal stromal cell line and its biocompatibility to acellular porcine corneal stroma[J]. Int J Ophthalmol, 2012, 5(3):286-292. |
[17] | BERGMANSON J P, HORNE J, DOUGHTY M J, et al. Assessment of the number of lamellae in the central region of the normal human corneal stroma at the resolution of the transmission electron microscope[J]. Eye Contact Lens, 2005, 31(6):281-287. |
[18] | GONZALEZ-ANDRADES M, DE LA CRUZ CARDONA J, IONESCU A M, et al. Generation of bioengineered corneas with decellularized xenografts and human keratocytes[J]. Invest Ophthalmol Vis Sci, 2011, 52(1):215-222. |
[19] | GLAESER R M, JUBB J S, HENDERSON R. Structural comparison of native and deoxycholate-treated purple membrane[J]. Biophys J, 1985, 48(5):775-780. |
[20] | GEORGE A J, LARKIN D F. Corneal transplantation: the forgotten graft[J]. Am J Transplant, 2004, 4(5):678-685. |
[21] | 周庆军, 谢立信. 组织工程角膜的基础研究和临床应用现状[J]. 中华细胞与干细胞杂志(电子版), 2014, 4(1):1-4. ZHOU Qingjun, XIE Lixin. Tissue-engineered cornea: new progresses and challenges[J]. Chin J Cell Stem Cell(Electronic Edition), 2014, 4(1):1-4. |
[22] | SHAH A, BRUGNANO J, SUN S, et al. The development of a tissue-engineered cornea: biomaterials and culture methods[J]. Pediatr Res, 2008, 63(5):535-544. |
[23] | CHOI H J, KIM M K, LEE H J, et al. Efficacy of pig-to-rhesus lamellar corneal xenotransplantation[J]. Invest Ophthalmol Vis Sci, 2011, 52(9):6643-6650. |
[24] | WU Zheng, ZHOU Yang, LI Naiyang, et al. The use of phospholipase A2 to prepare acellular porcine corneal stroma as a tissue engineering scaffold[J]. Biomaterials, 2009, 30(21):3513-3522. |
[25] | PANG Kunpeng, DU Liqun, WU Xinyi. A rabbit anterior cornea replacement derived from acellular porcine cornea matrix, epithelial cells and keratocytes[J]. Biomaterials, 2010, 31(28):7257-7265. |
[26] | SEGREST J P, WILKINSON T M, SHENG L. Isolation of glycophorin with deoxycholate[J]. Biochim Biophys Acta, 1979, 554(2):533-537. |
[27] | XU Yonggen, XU Yongsheng, HUANG Chen, et al. Development of a rabbit corneal equivalent using an acellular corneal matrix of a porcine substrate[J]. Mol Vis, 2008, 14(253-255):2180-2189. |