|
- 2017
融合社交网络的物质扩散推荐算法
|
Abstract:
摘要: 在互联网信息推荐应用中,恰当地结合用户的社交信息能够进一步提升推荐的精度。 以用户为枢纽节点将社交网络和用户-商品二部图融合为耦合网络,并在此基础上提出了一种基于物质扩散动力过程的推荐算法,该算法将社交网络的朋友信息和用户选择商品的信息进行有机集成,是经典物质扩散算法的一种拓展。 在真实数据集Friendfeed和Epinions上的实验表明,在只计算小度用户的推荐准确率时,该方法比经典的物质扩散算法分别提高了38.48%和9.17%;当测试集所占比例为80%时,对于所有目标用户,算法较经典物质扩散算法的推荐准确率分别提高59.05%和21.62%。 因此,社交网络信息的加入可以显著提高对小度用户的推荐准确度。
Abstract: In the Internet information recommendation application, combining the users social information into recommend systems may further enhance the recommendation accuracy. We transform the social network and the user-commodity bipartite network into a coupled network by considering users as hub nodes and then propose a recommendation algorithm based on the process of mass diffusion dynamics, which integrates the information of friends in the social network and the information of the users selection of items in the user-item bipartite network. It can easily be seen that our approach is an extension of the classical mass diffusion algorithm. Experiments on the real datasets, Friendfeed and Epinions show that the recommendation accuracy of small degree users is improved by 38.48% and 9.17% respectively by comparing our proposed method with the classical mass diffusion algorithm. When the proportion of probe set is 80%, the improvement on recommendation accuracy is 59.05% and 21.62% than that of the classical material diffusion algorithm for all target users. Therefore, the addition of social network information can significantly improve the recommendation accuracy for small degree users
[1] | HE Jianming, CHU W W. A social network-based recommender system(SNRS)[M]. Berlin: Springer, 2010. |
[2] | LI Hui, WU Dingming, MAMOULIS N. A revisit to social network-based recommender systems[C] //Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM, 2014:1239-1242. |
[3] | ZHOU Tao, KUSCSIK Z, LIU Jianguo, et al. Solving the apparent diversity-accuracy dilemma of recommender systems [J]. Proceedings of the National Academy of Sciences, 2010, 107(10):4511-4515. |
[4] | LIU Fengkun, LEE Hong Joo. Use of social network information to enhance collaborative filtering performance[J]. Expert Systems with Applications, 2010, 37(7):4772-4778. |
[5] | YANG Xiwang, GUO Yang, LIU Yong, et al. A survey of collaborative filtering based social recommender systems [J]. Computer Communications, 2014, 41(5):1-10. |
[6] | YANG Xiwang, STECK H, LIU Yong. Circle-based recommendation in online social networks[C] //Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 1267-1275. |
[7] | NOEL J, SANNER S, TRAN K N, et al. New objective functions for social collaborative filtering[C] //Proceedings of the 21st International Conference on World Wide Web. New York: ACM, 2012: 859-868. |
[8] | CUI Peng, WANG Fei, LIU Shaowei, et al. Who should share what?: item-level social influence prediction for users and posts ranking[C] //Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2011: 185-194. |
[9] | YANG Shuanghong, LONG Bo, SMOLA A, et al. Like like alike: joint friendship and interest propagation in social networks[C] //Proceedings of the 20th International Conference on World Wide Web. New York: ACM, 2011:537-546. |
[10] | RENDLE S. Factorization machines[C] //Proceedings of the 10th IEEE International Conference on Data Mining(ICDM 2010). Los Alamitos: IEEE Computer Society, 2010:995-1000. |
[11] | FREEMAN L C. Centrality in social networks conceptual clarification[J]. Social Networks, 1978, 1(3):215-239. |
[12] | L(¨overU)Linyuan, MEDO M, YEUNG Chi Ho, et al. Recommender systems[J]. Physics Reports, 2012, 519(1):1-49. |
[13] | RECKER M M, WILEY D A. A non-authoritative educational metadata ontology for filtering and recommending learning objects[J]. Interactive Learning Environments, 2001, 9(3):255-271. |
[14] | MCNEE S M, RIEDL J, KONSTAN J A. Being accurate is not enough: how accuracy metrics have hurt recommender systems[C] //Proceedings of CHI'06 Extended Abstracts on Human factors in Computing Systems. New York:ACM, 2006:1097-1101. |
[15] | TANG Jiliang, HU Xia, LIU Huan. Social recommendation: a review [J]. Social Network Analysis and Mining, 2013, 3(4):1113-1133. |
[16] | CAI Xiongcai, BAIN M, KRZYWICKI A, et al. Collaborative filtering for people to people recommendation in social networks[M]. Berlin: Springer, 2010. |
[17] | YU Le, PAN Rong, LI Zhangfeng. Adaptive social similarities for recommender systems[C] //Proceedings of the 5th ACM Conference on Recommender Systems. New York:ACM, 2011:257-260. |
[18] | JAMALI M, ESTER M. A transitivity aware matrix factorization model for recommendation in social networks[C] //International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2011, 11:2644-2649. |
[19] | JIANG Meng, CUI Peng, LIU Rui, et al. Social contextual recommendation[C] //Proceedings of the 21th ACM International Conference on Information and Knowledge Management. New York: ACM, 2012: 45-54. |
[20] | NIE Dacheng, ZHANG Zike, ZHOU Junlin, et al. Information filtering on coupled social networks[J]. PloS One, 2014, 9(7):e101675. |
[21] | SCHEIN A I, POPESCUL A, UNGAR L H, et al. Methods and metrics for cold-start recommendations[C] //Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2002:253-260. |
[22] | RENDLE S, GANTNER Z, FREUDENTHALER C, et al. Fast context-aware recommendations with factorization machines[C] //Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2011:635-644. |
[23] | HONG L J, DOUMITH A S, DAVISON B D. Co-factorization machines: modeling user interests and predicting individual decisions in twitter[C] //Proceedings of the 6th ACM International Conference on Web Search and Data Mining. New York: ACM, 2013:557-566. |
[24] | 郭磊, 马军, 陈竹敏, 等. 一种结合推荐对象间关联关系的社会化推荐算法[J]. 计算机学报, 2014, 37(1):219-228. GUO Lei, MA Jun, CHEN Zhumin, et al. Incorporating item relations for social recommendation[J]. Chinese Journal of Computers, 2014, 37(1):219-228. |
[25] | LIU Xin, ABERER K. SoCo: a social network aided context-aware recommender system[C] //Proceedings of the 22nd International Conference on World Wide Web. New York: ACM, 2013: 781-802. |
[26] | MA Hao, ZHOU Dengyong, LIU Chao, et al. Recommender systems with social regularization[C] //Proceedings of the 4th ACM International Conference on Web Search and Data Mining. New York: ACM, 2011: 287-296. |
[27] | LI Wujun, YEUNG Dityan. Relation regularized matrix factorization[C] // Proceedings of the 21st International Joint Conference on Artificial Intelligence(IJCAI-09). New York: ACM, 2009: 1126-1131. |
[28] | MA Hao, YANG Haixuan. LYU M R. Sorec: social recommendation using probabilistic matrix factorization[C] //Proceedings of the 21th ACM International Conference on Information and Knowledge Management. New York: ACM, 2008:931-940. |
[29] | MA Hao, KING I, LYU M R. Learning to recommend with social trust ensemble[C] //Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2009:203-210. |
[30] | RENDLE S. Social network and click-through prediction with factorization machines[J]. Proceedings of the KDD Cup Workshop. New York: ACM Press, 2012. |
[31] | 孟祥武, 刘树栋, 张玉洁, 等. 社会化推荐系统研究[J]. 软件学报, 2015, 26(6):1356-1372. MENG Xiangwu, LIU Shudong, ZHANG Yujie, et al. Research on social recommender systems[J]. Journal of Software, 2015, 26(6):1356-1372. |
[32] | CELLI F, DI LASCIO F M L, MAGNANI M, et al. Social network data and practices:the case of friend feed[C] //International Conference on Social Computing, Behavioral Modeling, and Prediction. Berlin: Springer, 2010: 346-353. |
[33] | MASSA P, AVESANI P. Trust-aware bootstrapping of recommender systems[C] //Proceedings of ECAI 2006 Workshop on Recommender Systems.[S.l] :[s.n.].2006: 29-33. |
[34] | ZHOU Tao, REN Jie, MEDO M, et al. Bipartite network projection and personal recommendation[J]. Physical Review E, 2007, 76(4):046115. |
[35] | KAUTZ H, SELMAN B, SHAH M. Referral Web: combining social networks and collaborative filtering[J]. Communications of the ACM, 1997, 40(3):63-65. |