|
- 2017
关于复形的Gc-内射维数的一个注记
|
Abstract:
摘要: 令R是一个交换环,C是一个半对偶化模。证明了如果复形X有有限的Gc-内射维数,则复形X就有一个严格的Gc-内射余预解式。
Abstract: Let R be a commutative ring and C be a semidualizing R-module. It is proved that if a complex X with finite Gc-injective dimension then X admitted a strict Gc-injective coresolution
[1] | WHITE D. Gorenstein projective dimension with respect to a semidualizing module[J]. Journal of Commutative Algebra, 2012, 2(1):111-137. |
[2] | VASCONCELOS W V. Divisor theory in module categories[M]. North-Holland, American Elsevier, 1974. |
[3] | YANG Chunhua, LIANG Li. Gorenstein injective and projective complexes with respect to a semidualizing module[J]. Comm Algebra, 2012, 40: 3352-3364. |
[4] | GOLOD E S.G-dimension and generalized perfect ideals[J]. Trudy Mat.inst.steklov, 1984, 165:62-66. |
[5] | GILLESPIE J. The flat model structure on Ch(R)[J]. Transactions of the American Mathematical Society, 2004, 356(8):3369-3390. |
[6] | AVRAMOV L L, FOXBY H B. Homological dimensions of unbounded complexes[J]. Journal of Pure & Applied Algebra, 1991, 71(2-3):129-155. |
[7] | FOXBY H B. Gorenstein modules and related modules[J]. Mathematica Scandinavica, 1972, 31:267-284. |
[8] | ENOCHS E E, JENDA O M G, XU J. Orthogonality in the category of complexes[J]. Math J Okayama Univ, 38(1996):25-46. |
[9] | GENG Yuxian, DING Nanqing. W-Gorenstein modules[J]. Journal of Algebra, 2010, 325(1):132-146. |