全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

具有PH(n)理赔时间间隔的Sparre-Andersen 模型中的分红问题
Dividend problems in a Sparre-Andersen model with PH(n) interclaim times

DOI: 10.6040/j.issn.1671-9352.0.2014.484

Keywords: Sparre-Andersen模型,PH(n)分布,分红,随机观测,
Sparre-Andersen model
,PH(n) distribution,dividend,randomized observation

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 假设盈余过程描述为Sparre-Andersen模型, 理赔时间间隔服从PH(n)分布, 分红只在一些随机的观测时间支付, 分红策略为障碍策略,得到了期望折现分红和破产时间Laplace变换所满足的积分-微分方程组,并在n=2和指数理赔的假设下给出了方程组的求解方法。
Abstract: Assuming that the surplus process is described by a Sparre-Andersen model, the interclaim times are PH(n) distributed, dividends can only be paid at some randomized observation times and the dividends are paid according to a barrier strategy, the integro-differential equations for the expected discounted dividends and the Laplace transform of ruin time were derived. The solutions of the equations were given with exponentially distributed claims and n=2

References

[1]  ALBRECHER H, THONHAUSER S. Optimality results for dividend problems in insurance[J]. RACSAM Revista de la Real Academia de Ciencias: Serie A, Matematicas, 2009, 103(2):295-320.
[2]  ALBRECHER H, CHEUNG E C K, THONHAUSER S. Randomized observation periods for the compound Poisson risk model:dividends[J]. Astin Bulletin, 2011, 41(2):645-672.
[3]  REN Jiandong. The discounted joint distribution of the surplus prior to ruin and the deficit at ruin in a Sparre Andersen model[J]. North American Actuarial Journal, 2007, 11(3):128-136.
[4]  LI Shuanming. The time of recovery and the maximum severity of ruin in a Sparre-Andersen model[J]. North American Actuarial Journal, 2008, 12(4):413-427.
[5]  LIU Xiao, CHEN Zhenlong. Dividend problems in the dual model with diffusion and exponentially distributed observation time[J]. Statistics and Probability Letters, 2014, 87:175-183.
[6]  CHEUNG E C K. Discussion of “Moments of the Dividend Payments and Related Problems in a Markov-Modulated Risk Model”[J]. North American Actuarial Journal, 2007, 11(4):145-148.
[7]  De FINETTI B. Su un impostazione alternativa dell teoria collectiva del rischio[J]. Transaction of the 15th International Congress of Actuaries, 1957, 2:433-443.
[8]  AVANZI B. Strategies for dividend distribution:a review[J]. North American Actuarial Journal, 2009, 13(2):217-251.
[9]  WANG Cuilian, LIU Xiao, XU Lin. The optimal dividend and capital injection strategies in the classical risk model with randomized observation periods[J]. Chinese Journal of Applied Probability and Statistics, 2014, 30(6): 661-672.
[10]  ALBRECHER H, GERBER H U, SHIU E S W. The optimal dividend barrier in the Gamma-Omega model[J]. European Actuarial Journal, 2011, 1(1):43-55.
[11]  ALBRECHER H, BUERLE N, THONHAUSER S. Optimal dividend-payout in random discrete time[J]. Statistics and Risk Modeling, 2011, 28(3):251-276.
[12]  WANG Cuilian, LIU Xiao. Dividend problems in the diffusion model with interest and exponentially distributed observation time[J]. Journal of Applied Mathematics, 2014, 2014:814835.1-814835.2.
[13]  ALBRECHER H, BOXMA O J. On the discounted penalty function in a Markov-dependent risk model[J]. Insurance: Mathematics and Economics, 2005, 37(3):650-672.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133