全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基于用户偏好加权的混合网络推荐算法
Hybrid recommendation by combining network-based algorithm and user preference

DOI: 10.6040/j.issn.1671-9352.3.2014.232

Keywords: TF-IDF,个性化推荐,标签,基于网络推荐,
TF-IDF
,network-based recommendation,personalized recommendation,tag

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 基于热传导或物质扩散理论的推荐算法首先利用网络结构得到对象间推荐关系,然后根据对象间关系预测用户喜欢的对象,而忽略了用户偏好。为了弥补这个缺陷,根据用户已选择对象的标签,利用TF-IDF方法构建用户偏好模型,以用户在预测对象标签上的平均偏好作为对该对象的偏好程度,采用加权方法与现有基于网络推荐算法混合运算。经在基准数据集MovieLens上测试表明,通过与目前效果最好的几种基于网络推荐算法进行加权混合运算,推荐结果在推荐精度、个性化、多样化等多种评价指标方面均比原有算法有明显提高。
Abstract: Recommendation algorithms based on heat conduction or mass diffusion first obtain the relationship between objects according to network structure, then predict the user's favorite objects based on these relationships, but these algorithms ignore user's preference. In order to overcome this defect, the TF-IDF approach was used to construct user's preference according to the tags contained in the objects selected by user, and the mean of preference of object's tags was taken as the preference of the object, then a hybrid recommendation model was proposed by combining network-based algorithm and the user preference model. The benchmark datasets, MovieLens, was used to evaluate our algorithm, and the experimental results demonstrate that hybrid algorithm can significantly improve accuracy, diversification and personalization of recommendations

References

[1]  ZHOU T, REN J, MEDO M, et al. Bipartite network projection and personal recommendation[J]. Physical Review E, 2007, 76(4):6116-6123.
[2]  ZHOU T, KUSCSIK Z, LIU J G, et al. Solving the apparent diversity accuracy dilemma of recommender systems[C]//Proceedings of the National Academy of Sciences of the United States of America. Washington: Natl Acad Sciences, 2010, 107:4511-4515.
[3]  SCOTT A G, BERNARDO A H. Usage patterns of collaborative tagging systems[J]. Journal of Information Science, 2006, 32(2):198-208.
[4]  ZHANG Z K, ZHOU T, ZHANG Y C. Tag-aware recommender systems: a state-of-the-art survey[J]. Journal of Computer Science and Technology, 2011, 26(5):767-777.
[5]  ZHANG Z K, LIU C, ZHANG Y C, et al. Solving the cold-start problem in recommender systems with social tags [J]. Europhysics Letters, 2010, 92(2):8002-8010.
[6]  MICHAEL J P, DANIEL B. Content-based recommendation systems[J]. Lecture Notes in Computer Science, 2007, 4321:325-341.
[7]  JIANG Shengyi, SONG Xiaoyu, WANG Hui, et al. A clustering-based method for unsupervised intrusion detections[J]. Pattern Recognition Letters, 2006, 27(7):802-810.
[8]  ZHOU T, JIANG L L, SU R Q. Effect of initial configurationon network-based recommendation[J]. Europhys Lett, 2008, 81(5):8004-8008.
[9]  PAN X, DENG G S, LIU J G. Weighted bipartite network and personalized recommendation[J]. Physics Procedia, 2010, 3(5):1867-1876.
[10]  LIU J G, ZHOU T, WANG B H, et al. Effects of user tastes on personalized recommendation[J]. International Journal of Modern Physics C, 2009, 20(12):1925-1932.
[11]  JOACHIMS T. A probabilistic analysis of the rocchio algorithm with TFIDF for text categorization[C]//Proceedings of the 14th International Conference on Machine Learning. New York: ACM, 1997:143-151.
[12]  ZHOU T, SU R Q, LIU R R, et al. Accurate and diverse recommendations via eliminating redundant correlations[J]. New J Phys, 2009, 11(12):3008-3026.
[13]  ZHANG Y C, BLATTNER M, YU Y K. Heat conduction process on community networks as a recommendation model[J]. Phys Rev Lett, 2007, 99(15):4301-4305.
[14]  LIU J G, ZHOU T, GUO Q. Information filtering via biased heat conduction[J]. Phys Rev E, 2011, 84(3):7101-7105.
[15]  QIU T, WANG T T, ZHANG Z K, et al. Heterogeneity involved network-based algorithm leads to accurate and personalized recommendations[J]. Physics and Society, 2013, arXiv:1305.7438vl.
[16]  CANTADOR I, BELLOGN A, VALLET D. Content-based recommendation in social tagging systems[C]//Proceedings of RecSys'10.New York: ACM, 2010:237-240.
[17]  BURKE R. Hybrid Recommender systems: survey and experiments [J]. User Model User-Adap Interact, 2007, 12(4):331-370.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133