|
- 2017
强Gorenstein C-平坦模
|
Abstract:
摘要: 作为强Gorenstein平坦模的推广, 引入了相对于半对偶化模C的强Gorenstein 平坦模, 即强Gorenstein C-平坦模, 并给出了其若干性质和等价刻画, 比如强Gorenstein C-平坦模类是PC(R)-可解类并且关于直和及直和项封闭, 还研究了强Gorenstein C-平坦模的稳定性。
Abstract: As a generalization of strongly Gorenstein flat modules, the strongly Gorenstein flat modules with respect to a semidualizing modules C, that is, strongly Gorenstein C-flat module are introduced, and some properties and equivalent characterizations are given, for example, the class of Strongly Gorenstein C-flat modules is PC-resolving and closed under direct sums as well as direct summands. Morever, the stability of strongly Gorenstein C-flat modules are investigated
[1] | ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220:611-633. |
[2] | HOLM H, WHITE D. Foxby equivalence over associative rings[J]. Math Kyoto Univ, 2007, 47:781-808. |
[3] | ENOCHS E E, YASSEMI S. Foxby equivalance and cotorsion theories relative to semidualizing modules[J]. Math Scand, 2004, 95:33-43. |
[4] | XU A M, DING N Q. On stability of Gorenstein categories[J]. Comm Algebra, 2013, 41(10):3793-3804. |
[5] | YANG G, LIU Z K. Stability of Gorenstein at categories[J]. Glasg Math J, 2012, 54:177-191. |
[6] | SATHER-WAGSTAFF S, SHARIF T, WHITE D. Stability of Gorenstein categories[J]. J Lond Math Soc, 2008, 77:481-502. |
[7] | HOLM H, J?RGENSEN P. Semi-dualizing modules and related Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2006, 205(2): 423-445. |
[8] | DING N Q, MAO L X. Gorenstein FP-injective and Gorenstein at modules[J]. J Algebra, 2008, 7:491-506. |
[9] | DING N Q, LI Y L, MAO L X. Strongly Gorenstein at modules[J]. J Aust Math Soc, 2009, 86:323-338. |
[10] | GILLESPIE J. Model structures on modules over Ding-Chen rings[J]. Homology Application, 2010, 12: 61-73. |
[11] | HOLM H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2004, 189:167-193. |
[12] | WHITE D. Gorenstein projective dimension with respect to a semidualizing modules[J]. Comm Algebra, 2006, 34(2):111-137. |
[13] | WANG Z P, LIU Z K. Stability of strongly Gorenstein at modules[J]. Vietnam J Math, 2014, 42:171-178. |
[14] | BOUCHIBA S. Stability of Gorenstein classes of modules[J]. Algebra Colloq, 2013, 20:623-636. |
[15] | TAKAKASHI R, WHITE D. Homological aspects of semidualizing modules[J]. Math Scand, 2008, 106:5-22. |