|
- 2017
拟Hopf代数上BHQ何时是预辫子monoidal范畴
|
Abstract:
摘要: 设H为带有可逆对极的拟Hopf代数, B为左拟Yetter-Drinfeld模代数,并且HBQ为拟Hopf Yetter-Drinfeld(H,B)-模范畴。讨论了范畴HBQ何时是预辫子monoidal范畴。假设B是H交换的,则拟Hopf Yetter-Drinfeld模范畴HQ上的辫子诱导出HBQ上的预辫子当且仅当HBQ中的每一个对象是dyslectic。
Abstract: Let H be a quasi-Hopf algebra with invertible antipode, B a left quasi Yetter-Drinfeld module algebra and HBQ the category of quasi Hopf Yetter-Drinfeld (H,B)-modules. It is discussed when the category HBQ is a pre-braided monoidal category. The following is proved: assume that B is H-commutative, then the braiding on the category of quasi Yetter-Drinfeld modules HQ induces a pre-braiding on HBQ if and only if every object of HBQ is dyslectic
[1] | BULACU D, PANAITE F, CAENEPEEL S. Yetter-Drinfeld categories for quasi-Hopf algebra[J]. Comm Algebra, 2006, 34:1-35. |
[2] | WANG Shuanhong. Braided monoidal categories associated Yetter-Drinfeld categories[J]. Comm Algebra, 2002, 30:5111-5124. |
[3] | CAENEPEEL S, VAN OYSTAEYEN F, ZHANG Yinhuo. Quantum Yang-Baxter module algebras[J]. <i>K</i>-theory, 1994, 8(3):231-255. |
[4] | DRINFELD V G. Quasi-Hopf algebras[J]. Leningrad Math J, 1990, 1:1419-1457. |
[5] | DRINFELD V G. Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations[M] // Problems of Modern Quantum Field Theory. Berlin: Springer,1989: 1-13 |
[6] | BULACU D, PANAITE F, VAN OYSTAEYEN F. Quasi-Hopf algebra actions and smash product[J]. Comm Algebra, 2000, 28:631-651. |
[7] | PAREIGIS B. On braiding and dyslexia[J]. J Algebra, 1995, 171(2):413-425. |
[8] | BULACU D, NAUWELAERTS E. Radfords biproduct for quasi-Hopf algebras and bosonization[J]. J Pure Appl Algebra, 2002, 174:1-42. |