全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

小波法求解分数阶微分方程组及其收敛性分析
Wavelets method for solving system of fractional differential equations and the convergence analysis

DOI: 10.6040/j.issn.1671-9352.0.2014.078

Keywords: 分数阶微分方程组,收敛性分析,算子矩阵,移位的Legendre多项式,Legendre小波,
Legendre wavelets
,operational matrix,convergence analysis,system of fractional differential equations,shifted Legendre polynomial

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 应用Legendre小波求解一类变系数分数阶微分方程组,利用Legendre小波积分算子矩阵将微分方程组转化成易于求解的代数方程组形式,进而对其进行求解.给出Legendre小波近似未知函数的收敛性分析,证明该方法的正确性,并给出三个数值算例进一步说明该方法是可行并有效的.
Abstract: The Legendre wavelets defined by the shifted Legendre polynomial is used to solve the numerical solution of the system of fractional differential equations with variable coefficient.The convergence analysis is presented to show that this method is correct for solving the fractional differential equations. Finally, three numerical examples are given to demonstrate the feasibility and efficiency of this method

References

[1]  SUN H, ABDELWAHAB A, ONARAL B. Linear approximation of transfer function with a pole of fractional order[J]. IEEE Transactions on Automatic Control, 1984, 29:441-444.
[2]  KOELLER R C. Applications of fractional calculus to the theory of viscoelasticity[J]. Journal of Applied Mechanics, 1984, 51:299-307.
[3]  DEBNATH L. Recent applications of fractional calculus to science and engineering[J]. International Journal of Mathematics and Mathematical Sciences, 2003, 54:3413-3442.
[4]  GRIGORENKOL, GRIGORENKO E. Chaotic dynamics of the fractional Lorenz system[J]. Physical Review Letters, 2003, 91(3):034101.
[5]  YUSTE S B. Weighted average finite difference methods for fractional diffusion equations[J]. Computational Physics, 2006, 216:264-274.
[6]  MOMANI S M, ODIBAT Z. Numerical approach to differential equations of fractional order[J]. Journal of Computational and Applied Mathematics, 2007: 96-110.
[7]  LI Xinxiu. Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17:3934-3946.
[8]  WU Guocheng, LEE E W M. Fractional variational iteration method and its application[J]. Physics Letters A, 2010, 374(25):2506-2509.
[9]  MOMANI S M, ODIBAT Z. Homotopy Perturbation method for nonlinear partial differential equations of fractional order[J]. Physic Letters A, 2007, 365:315-350.
[10]  MATIGNON D. Stability results of fractional differential equations with applications to control processing[C]. Proceeding of IMACS, IEEE-SMC, Lille,France, 1996: 963-968.
[11]  高芳,江卫华.分数阶微分方程组边值问题解的存在性[J].数学的实践与认识,2013,43(10):254-260. GAO Fang, JIANG Weihua. Existenceof solutions for boundary value problem of fractional differential equation system[J]. Mathematics in Practice and Theory, 2013, 43(10):254-260.
[12]  ODIBAT Z. Analytic study on linear systems of fractional differential equations[J]. Computers and Mathematics with Applications, 2010, 59:1171-1183.
[13]  BONILLA B, RIVERO M, TRUJILLO J J. On systems of linear fractional differential equations with constant coefficients[J]. Applied Mathematics and Computation, 2007, 187(1):68-78.
[14]  REHMAN Mu, KHAN R A. The Legendre wavelet method for solving fractional differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16:4163-4173.
[15]  LI Yuanlu. Solving a nonlinear fractional differential equation using Chebyshev wavelets[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15:2284-2292.
[16]  TAVAZOEI M S, HAERI M. A note on the stability of fractional order systems[J]. Mathematics and Computers in Simulation, 2009, 79(5):1566-1576.
[17]  DAFTARDAR-GEJJI V, JAFARI H. Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives[J]. Journal of Mathematical Analysis and Applications, 2007, 328(2):1026-1033.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133