|
- 2015
嵌入曲面的图的点荫度
|
Abstract:
摘要: 图G的导出森林k-划分是指其顶点集V(G)的一个k-划分(V1,V2,…,Vk),使得对于每个 i (1≤i≤k),导出子图G[Vi]是一个森林.图G的点荫度是使得图G有导出森林k-划分的最小的正整数k,记为va(G).主要证明了如果图G能够嵌入到欧拉示性数非负的曲面上,则当图G满足三类条件时,可以得到va(G)≤2.
Abstract: An induced forest k-partition of a graph G is a k-partition (V1,V2,…,Vk) of the vertex set V(G) such that, for each i with 1≤i≤k, the induced subgraph G[Vi] is a forest. The vertex arboricity of a graph G is the minimum positive integer k such that G has an induced forest k-partition, denoted by va(G). Let G be a simple graph embedded in a surface of nonnegative Euler characteristic, and if G satisfies three kinds of conditions, then va(G)≤2
[1] | YANG Aifeng, YUAN Jinjiang. On the vertex-arboricity of planar graphs of diameter two[J]. Discrete Mathematics, 2007, 307:2438-2447. |
[2] | CHEN Min, ANDRE Raspand, WANG Weifan. Vertex-arboricity of planar graphs without intersecting triangles[J]. European Journal of Combinatorics, 2012, 33:905-923. |
[3] | HUANG Danjun, SHIU Wai Chee, WANG Weifan. On the vertex-arboricity of planar graphs without 7-cycles[J]. Discrete Mathematics, 2012, 312:2304-2315. |
[4] | HUANG Danjun, WANG Weifan. Vertex-arboricity of planar graphs without chordal 6-cycles[J]. International Journal of Computer Mathematics, 2013, 90(2):258-272. |
[5] | BONDY J A, MURTY U S R. Graph theory with applications[M]. New York: North-Holland, 1976. |
[6] | CHARTRAND G, KRONK H V, WALL C E. The point-arboricity of a graph[J]. Discrete mathematics, 1968, 6:169-175. |
[7] | RASPAND A, WANG Weifan. On the vertex-arboricity of planar graphs[J]. European Journal of Combinatorics, 2008, 29:1064-1075. |