全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

具有点可数弱基及满足开(G)条件的空间有限并的D-性质
D-properties of Finite unions of spaces with point countable weak bases and satisfying open(G)

DOI: 10.6040/j.issn.1671-9352.0.2016.571

Keywords: 开(G)条件,D-空间,可数紧度,弱基,
weak base
,countable tightness,open(G),D-space

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 针对点可数弱基和开(G)条件与D-性质的联系分别进行了研究。 首先证明了:如果空间X具有可数紧度且X=∪{Xi:1≤i≤m},其中每个Xi具有点可数弱基Ti={Ti(x):x∈Xi}且对任意不同的x,y∈X,有Ti(x)∩Ti(y)=?,那么空间 X为D-空间。 然后证明了:如果X=X1∪X2,其中X1和X2都满足开(G)条件,那么X1^-∩X2^-满足开(G)条件。 在此基础上,对有限多个满足开(G)条件的空间的并是D-空间这一结论给出了详细的证明。
Abstract: The relation between point-countable weak bases and D-property is studied. It is shown that, if a space X of countable tightness is the union of finitely many subspaces Xi with point-countable weak base Ti={Ti(x):x∈Xi} satisfying Ti(x)∩Ti(y)=? for any distinct x,y∈X, then X is a D-space. And then the relation is studied between open(G)and D-property. We obtain that, if X=X1∪X2, where both X1 and X2 satisfy open(G), then X1^-∩X2^- satisfies open(G). With the help of this result, a detailed proof is shown at last for the result that the union of finitely many subspaces satisfying open(G)is a D-space

References

[1]  ARHANGELSKII A V. Mappings and spaces[J]. Russian Mathematical Surveys, 1966, 21(4):115-162.
[2]  COLLINS P J, REED G M, Roscoe A W. The point-countable base problem[M] // VAN MILL J, REED G M. Open problems in topology. Amsterdam: Elsevier, 1990: 237-250.
[3]  GRUENHAGE G. A note on <i>D</i>-spaces[J]. Topology and its Applications, 2006, 153(13):2229-2240.
[4]  BURKE D. Weak bases and <i>D</i>-spaces[J]. Commentationes Mathematicae Universitatis Carolinae, 2007, 48:281-289.
[5]  VAN DOUWEN E K, PFEFFER W. Some properties of the Sorgenfrey line and related spaces[J]. Pacific Journal of Mathematics, 1979, 81(2):371-377.
[6]  ARHANGELSKII A V. <i>D</i>-spaces and finite unions[J]. Proceedings of the American Mathematical Society, 2004, 132(7):2163-2170.
[7]  SOUKUP D, SZEPTYCKI P J. The union of two <i>D</i>-spaces need not be <i>D</i>[J]. Fundamenta Mathematicae, 2013, 220:129-137.
[8]  PENG Liang-Xue. The <i>D</i>-property of some Lindel?f spaces and related conclusions[J]. Topology and its Applications, 2007, 154:469-475.
[9]  ARHANGELSKII A V, BUZYAKOVA R Z. Addition theorems and <i>D</i>-spaces[J]. Commentationes Mathematicae Universitatis Carolinae, 2002, 43(4):653-663.
[10]  ZHANG Xin, GUO Hongfeng. The <i>D</i>-property of finite unions of t-metrizable spaces and certain function spaces[J]. Journal of Function Spaces, 2013. Doi: 10.1155/2013/612954.
[11]  ENGELKING R. General topology[M]. Warsaw: Polish Scientific Publishers, 1977.
[12]  郭洪峰,张新. 对两种重要空间类<i>D</i>-空间性质的研究[J]. 山东大学学报(理学版), 2008, 43(1):88-90. GUO Hongfeng, ZHANG Xin. Research on two important classes of <i>D</i>-spaces[J]. Journal of Shandong University(Natural Science), 2008, 43(1):88-90.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133