|
- 2017
相对于半对偶模的Gorenstein AC-投射模
|
Abstract:
摘要: 设SCR是半对偶双模。 引入了相对于半对偶双模SCR的Gorenstein AC-投射模, 并探讨了这一模类的同调性质。
Abstract: Let SCR be a semidualizing bimodule. Gorenstein AC-projective module with respect to a semidualizing bimodule is introduced, and some homological properties of these modules are given
[1] | ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000. |
[2] | HOLM H, WHITE D. Foxby equivalence over associative rings[J]. Journal of Mathematics of Kyoto University, 2007, 47(4):781-808. |
[3] | ZHANG Chunxia, WANG Limin, LIU Zhongkui. Ding projective modules with respect to a semidualizing bimodule[J]. Rocky Mountain Journal of Mathematics, 2015, 45(4):1389-1411. |
[4] | HOLM H. Gorenstein homological dimensions[J]. Journal of Pure & Applied Algebra, 2004, 189(1):167-193. |
[5] | BRAVO D, GILLESPIE J, HOVEY M. The stable module category of a general ring[J]. Mathematics, 2014: 1-38. |
[6] | HOLM H, J?rgensen P. Semi-dualizing modules and related Gorenstein homological dimensions[J]. Journal of Pure & Applied Algebra, 2004, 205(2):423-445. |
[7] | CHRISTENSEN L W. Gorenstein dimensions[J]. Lecture Notes in Mathematics, 2000, 1747:3-158. |
[8] | YANG Xiaoyan, LIU Zhongkui. <i>C</i>-Gorenstein projective, injective and flat modules[J]. Czechoslovak Mathematical Journal, 2010, 60(4):1109-1129. |
[9] | ROTMAN J J. An introduction to homological algebra[M]. New York: Academic Press, 1979. |